期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The Effect of Macronutrient Restrictions on Gut Microbiome and Biochemical Parameters of Wistar Albino Rats
1
作者 Blandine Ngum Shu Bernard Tiencheu +5 位作者 Fabrice Tonfack Djikeng deffo ngongang flore tiepma Dibanda Romelle Feumba Yolandia Jamea Nganje Epanty Lyonga Agnes Namondo Mbongo Aduni Ufuan Achidi 《Journal of Biosciences and Medicines》 2024年第6期286-310,共25页
Macronutrients serve as a source of energy for both gut microbiota and its host. An increase or decrease in macronutrients can either increase or decrease the composition of gut microbiota, leading to gut dysbiosis wh... Macronutrients serve as a source of energy for both gut microbiota and its host. An increase or decrease in macronutrients can either increase or decrease the composition of gut microbiota, leading to gut dysbiosis which has been implicated in many diseases state including non-communicable diseases. To achieve this, seven diets were formulated by restricting 60% of each macronutrient. These diets were fed on 42 albino rats (Wistar), divided into 7 groups of 6 rats each. Group 1 was fed on a normal laboratory chow diet (ND), group 2 received a fat-restricted diet (FRD), group 3 received a protein-restricted diet, (PFD), group 4 received a carbohydrate-restricted diet (CRD), group 5 received a protein and fat-restricted diet (PFRD), group 6 re-ceived a carbohydrate and fat-restricted diet (CFRD) and group 7 received a carbohydrate and protein-restricted diet (CPRD). Feed and water intake were given ad libitum and daily weight and food intake were recorded. The experiment went on for 4 weeks after which animals were sacrificed and intestinal content and blood were collected for analysis (gut microbial composition, glucose, insulin levels, serum lipid, and enzyme). Compared to the control group results showed a decrease in Bacteroides (40.50 - 14.00 CFU), HDL (68.20 - 40.40 mg/dl), and AST (66.62 - 64.74 U/L) in FRD. An increase in AST (66.6 - 69.43 U/L), Bifidobacterial (59.50 - 92.00 CFU) and decreased Bacteroides (40.5 - 19.5 CFU) for PRD was also recorded. CRD reduced Lactobacillus (73 - 33.5 CFU), total bacterial count (129 - 48 CFU), HDL (68.2 - 30.8 mg/dl), and cholesterol (121.44 - 88.65 mg/dl) whereas intestinal composition of E. coli (30.5 - 51.5 CFU) increased. PFRD increased Lactobacillus (73.00 - 102.5 CFU), Bifidobacterial (59.5 - 100 CFU), HDL (68.2 - 74.7 mg/dl), and Triglyceride (111.67 - 146.67 mg/dl) concentration. Meanwhile, a reduction in Bifidobacterial (59.5 - 41.5 CFU), and an increasing of AST (66.62 - 70.30 U/l) were recorded for CFRD. However, Bacteroides (40.5 69.5 CFU), LDL (30.95 - 41.98 mg/dl) increased and Bifidobacterial (59.5 - 38.00 CFU) and HDL (68.2 - 53.5 mg/dl) decreased for CPRD. This work, therefore, concludes that macronutrient restriction causes significant changes in serum marker and enzyme profile, and gut microbial composition which can cause gut dysbiosis and later on could expose the host to inflammatory diseases in the long run. 展开更多
关键词 DIETS DYSBIOSIS Gut Microbiome Lipid Profile Serum Enzymes Non-Communicable Disease Gut Microbiota Gut Dysbiosis Restricted Diet
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部