期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Enhancing potassium-ion storage of Bi_(2)S_(3) through external–internal dual synergism: Ti_(3)C_(2)T_(x) compositing and Cu^(2+) doping
1
作者 dawei sha Yurong You +5 位作者 Rongxiang Hu Jianxiang Ding Xin Cao Yuan Zhang Long Pan ZhengMing Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期39-51,共13页
Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode ... Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode electrode materials.Here,we propose a dual synergic optimization strategy to enhance the K^(+)storage stability and reaction kinetics of Bi_(2)S_(3) through two-dimensional compositing and cation doping.Externally,Bi_(2)S_(3) nanoparticles are loaded onto the surface of three-dimensional interconnected Ti_(3)C_(2)T_(x) nanosheets to stabilize the electrode structure.Internally,Cu^(2+)doping acts as active sites to accelerate K^(+)storage kinetics.Various theoretical simulations and ex situ techniques are used to elucidate the external–internal dual synergism.During discharge,Ti_(3)C_(2)T_(x) and Cu^(2+)collaboratively facilitate K+intercalation.Subsequently,Cu^(2+)doping primarily promotes the fracture of Bi2S3 bonds,facilitating a conversion reaction.Throughout cycling,the Ti_(3)C_(2)T_(x) composite structure and Cu^(2+)doping sustain functionality.The resulting Cu^(2+)-doped Bi2S3 anchored on Ti_(3)C_(2)T_(x)(C-BT)shows excellent rate capability(600 mAh g^(-1) at 0.1 A g^(–1);105 mAh g^(-1) at 5.0 A g^(-1))and cycling performance(91 mAh g^(-1) at 5.0 A g^(-1) after 1000 cycles)in half cells and a high energy density(179 Wh kg–1)in full cells. 展开更多
关键词 Bi_(2)S_(3) cation doping potassium-ion batteries synergic mechanism Ti_(3)C_(2)T_(x)compositing
在线阅读 下载PDF
Built‑In Electric Field‑Driven Ultrahigh‑Rate K‑Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti_(3)C_(2)T_(x)MXene 被引量:1
2
作者 Long Pan Rongxiang Hu +7 位作者 Yuan Zhang dawei sha Xin Cao Zhuoran Li Yonggui Zhao Jiangxiang Ding Yaping Wang ZhengMing Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期127-140,共14页
Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct th... Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct the dual transition metal tellurides(CoTe_(2)/ZnTe),which are anchored onto two-dimensional(2D)Ti_(3)C_(2)T_(x)MXene nanosheets.Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe_(2)/ZnTe interfaces,improving K+diffusion and adsorption.In addition,the different work functions between CoTe_(2)/ZnTe induce a robust built-in electric field at the CoTe_(2)/ZnTe interface,providing a strong driving force to facilitate charge transport.Moreover,the conductive and elastic Ti_(3)C_(2)T_(x)can effectively promote electrode conductivity and alleviate the volume change of CoTe_(2)/ZnTe heterostructures upon cycling.Owing to these merits,the resulting CoTe_(2)/ZnTe/Ti_(3)C_(2)T_(x)(CZT)exhibit excellent rate capability(137.0 mAh g^(-1)at 10 A g^(-1))and cycling stability(175.3 mAh g^(-1)after 4000 cycles at 3.0 A g^(-1),with a high capacity retention of 89.4%).More impressively,the CZT-based full cells demonstrate high energy density(220.2 Wh kg^(-1))and power density(837.2 W kg^(-1)).This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs. 展开更多
关键词 Transition metal tellurides HETEROSTRUCTURES Built-in electric field Potassium-ion batteries Anode material
在线阅读 下载PDF
Role of MXene surface terminations in electrochemical energy storage:A review 被引量:2
3
作者 Zhuoheng Bao Chengjie Lu +8 位作者 Xin Cao Peigen Zhang Li Yang Heng Zhang dawei sha Wei He Wei Zhang Long Pan Zhengming Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第9期2648-2658,共11页
MXenes are a group of recently discovered 2D materials and have attracted extensive attention since their first report in 2011;they have shown excellent prospects for energy storage applications owing to their unique ... MXenes are a group of recently discovered 2D materials and have attracted extensive attention since their first report in 2011;they have shown excellent prospects for energy storage applications owing to their unique layered microstructure and tunable electrical properties.One major feature of MXenes is their tailorable surface terminations(e.g.,-F,-O,-OH).Numerous studies have indicated that the composition of the surface terminations can significantly impact the electrochemical properties of MXenes.Nonetheless,the underlying mechanisms are still poorly understood,mainly because of the difficulties in quantitative analysis and characterization.This review summarizes the latest research progress on MXene terminations.First,a systematic introduction to the approaches for preparing MXenes is presented,which generally dominates the surface terminations.Then,theoretical and experimental efforts regarding the surface terminations are discussed,and the influence of surface terminations on the electronic and electrochemical properties of MXenes are generalized.Finally,we present the significance and research prospects of MXene terminations.We expect this review to encourage research on MXenes and provide guidance for usingthese materials for batteries and supercapacitors. 展开更多
关键词 MXene Surface terminations Energy storage First-principles calculation BATTERIES SUPERCAPACITORS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部