期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A novel Effective Panicle Number per Plant 4 haplotype enhances grain yield by coordinating panicle number and grain number in rice
1
作者 Yun Wang Xiaoqian Wang +6 位作者 Laiyuan Zhai Sundus Zafar congcong shen Shuangbing Zhu Kai Chen Yun Wang Jianlong Xu 《The Crop Journal》 SCIE CSCD 2024年第1期202-212,共11页
Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-... Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding. 展开更多
关键词 RICE Effective panicle number per plant Grain number per panicle HAPLOTYPE Grain yield potential
在线阅读 下载PDF
Genetic bases of source-,sink-,and yield-related traits revealed by genome-wide association study in Xian rice 被引量:10
2
作者 Yun Wang Yunlong Pang +4 位作者 Kai Chen Laiyuan Zhai congcong shen Shu Wang Jianlong Xu 《The Crop Journal》 SCIE CAS CSCD 2020年第1期119-131,共13页
The source-sink relationship determines the ultimate grain yield.We investigated the genetic basis of the relationship between source and sink and yield potential in rice.In two environments,we identified quantitative... The source-sink relationship determines the ultimate grain yield.We investigated the genetic basis of the relationship between source and sink and yield potential in rice.In two environments,we identified quantitative trait loci(QTL)associated with sink capacity(total spikelet number per panicle and thousand-grain weight),source leaf(flag leaf length,flag leaf width and flag leaf area),source-sink relationship(total spikelet number to flag leaf area ratio)and yield-related traits(filled grain number per panicle,panicle number per plant,grain yield per plant,biomass per plant,and harvest index)by genome-wide association analysis using 272 Xian(indica)accessions.The panel showed substantial variation for all traits in the two environments and revealed complex phenotypic correlations.A total of 70 QTL influencing the 11 traits were identified using 469,377 high-quality SNP markers.Five QTL were detected consistently in four chromosomal regions in both environments.Five QTL clusters simultaneously affected source,sink,source–sink relationship,and grain yield traits,probably explaining the genetic basis of significant correlations of grain yield with source and sink traits.We selected 24 candidate genes in the four consistent QTL regions by identifying linkage disequilibrium(LD)blocks associated with significant SNPs and performing haplotype analysis.The genes included one cloned gene(NOG1)and three newly identified QTL(qHI6,qTGW7,and qFLA8).These results provide a theoretical basis for high-yield rice breeding by increasing and balancing source–sink relationships using marker-assisted selection. 展开更多
关键词 RICE GWAS Source–sink relationship Quantitative trait loci/locus(QTL) Candidate gene
在线阅读 下载PDF
Genetic dissection of rice appearance quality and cooked rice elongation by genome-wide association study 被引量:6
3
作者 Xianjin Qiu Jing Yang +6 位作者 Fan Zhang Yanan Niu Xiuqing Zhao congcong shen Kai Chen sheng Teng Jianlong Xu 《The Crop Journal》 SCIE CSCD 2021年第6期1470-1480,共11页
Appearance and cooked rice elongation are key quality traits of rice. Although some QTL for these traits have been identified, understanding of the genetic relationship between them remains limited. In the present stu... Appearance and cooked rice elongation are key quality traits of rice. Although some QTL for these traits have been identified, understanding of the genetic relationship between them remains limited. In the present study, large phenotypic variation was observed in 760 accessions from the 3 K Rice Genomes Project for both appearance quality and cooked rice elongation. Most component traits of appearance quality and cooked rice elongation showed significant pairwise correlations, but a low correlation was found between appearance quality and cooked rice elongation. A genome-wide association study identified 74 QTL distributed on all 12 chromosomes for grain length, grain width, length to width ratio, degree of endosperm with chalkiness, rice elongation difference, and elongation index. Thirteen regions containing QTL stably expressed in multiple environments and/or exerting pleiotropic effects on multiple traits were detected. By gene-based association analysis and haplotype analysis, 46 candidate genes, including five cloned genes, and 49 favorable alleles were identified for these 13 QTL. The effect of the candidate gene Wx on rice elongation difference was validated by a transgenic strategy. These results shed light on the genetic bases of appearance quality and cooked rice elongation and provide gene resources for improving rice quality by molecular breeding. 展开更多
关键词 Appearance quality Cooked rice elongation Genome-wide association study Candidate gene Favorable allele Quantitative trait locus/loci(QTL)
在线阅读 下载PDF
Highly enhanced visible-light photocatalytic hydrogen evolution on g-C_3N_4 decorated with vopc through π-π interaction 被引量:2
4
作者 Yanan Liu Liubo Ma +4 位作者 congcong shen Xin Wang Xiao Zhou Zhiwei Zhao Anwu Xu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第2期168-176,共9页
Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from ... Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from low efficiencies.In this article,we report a tractable approach to modifying g-C3N4 with vanadyl phthalocyanine(VOPc/CN)for efficient visible-light-driven hydrogen production.A non-covalent VOPc/CN hybrid photocatalyst formed viaπ-πstacking interactions between the two components,as confirmed by analysis of UV-vis absorption spectra.The VOPc/CN hybrid photocatalyst shows excellent visible-light-driven photocatalytic performance and good stability.Under optimal conditions,the corresponding H2 evolution rate is nearly 6 times higher than that of pure g-C3N4.The role of VOPc in promoting hydrogen evolution activity was to extend the visible light absorption range and prevent the recombination of photoexcited electron-hole pairs effectively.It is expected that this facile modification method could be a new inspiration for the rational design and exploration of g-C3N4-based hybrid systems with strong light absorption and high-efficiency carrier separation. 展开更多
关键词 VOPc/g-C3N4 π-πInteraction Visible light photocatalysis Hydrogen evolution Charge separation efficiency
在线阅读 下载PDF
Genetic mechanism of heterosis for rice milling and appearance quality in an elite rice hybrid 被引量:1
5
作者 Hui You Sundus Zafar +6 位作者 Fan Zhang Shuangbing Zhu Kai Chen congcong shen Xiuqin Zhao Wenzhong Zhang Jianlong Xu 《The Crop Journal》 SCIE CSCD 2022年第6期1705-1716,共12页
Development of hybrid rice with high yield and grain quality is a goal of rice breeding.To investigate the genetic mechanism of heterosis for rice milling and appearance quality in indica/xian rice,QTL mapping was con... Development of hybrid rice with high yield and grain quality is a goal of rice breeding.To investigate the genetic mechanism of heterosis for rice milling and appearance quality in indica/xian rice,QTL mapping was conducted using 1061 recombinant inbred lines(RILs)derived from a cross of the xian rice cultivars Quan 9311B(Q9311B)and Wu-shan-si-miao(WSSM),and a backcross F_(1)(BC_(1)F_(1)) population developed by crossing the RILs with Quan 9311A(Q9311A),combined with phenotyping in two environments.The F_(1) hybrid(Q9311A×WSSM)showed various degrees of heterosis for milling and appearance quality.A total of 142 main-effect QTL(M-QTL)and 407 pairs of epistatic QTL(E-QTL)were identified for five milling and appearance quality traits and grain yield per plant(GYP)in the RIL,BC_(1)F_(1) and mid-parental heterosis(H_(MP)) populations.Differential detection of QTL in three populations revealed that most additive loci detected in the RILs did not show heterotic effects,but some of them did contribute to BC_(1)F_(1) trait performance.Unlike heterosis of GYP,single-locus overdominance and epistasis were the main contributors to heterosis for milling and appearance quality.Epistasis contributed more to the heterosis for milling quality than to that for appearance quality.Three(four)QTL regions harboring opposite(consistent)directions of favorable allele effects for GYP and grain quality were identified,indicating the presence of partial genetic overlaps between GYP and grain quality.Three strategies are proposed to develop hybrid rice with high yield and good grain quality:1)pyramiding favorable alleles with consistent directions of gene effects for GYP and grain quality at the M-QTL on different chromosomes;2)introgressing favorable alleles for GYP and grain quality into the parents and then pyramiding and fixing these additive effects in hybrids;and 3)pyramiding overdominant and dominant loci and minimizing or eliminating underdominant loci from the parents. 展开更多
关键词 Milling and appearance quality Quantitative trait locus/loci(QTL) HETEROSIS Hybrid rice Pyramiding breeding
在线阅读 下载PDF
Saline-alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon 被引量:4
6
作者 Lin Chen Guixiang Zhou +7 位作者 Biao Feng a Chao Wang Yu Luo Fang Li congcong shen Donghao Ma Congzhi Zhang Jiabao Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2024年第18期2948-2958,共11页
Saline–alkali land is an important cultivated land reserve resource for tackling global climate change and ensuring food security, partly because it can store large amounts of carbon(C). However, it is unclear how sa... Saline–alkali land is an important cultivated land reserve resource for tackling global climate change and ensuring food security, partly because it can store large amounts of carbon(C). However, it is unclear how saline–alkali land reclamation(converting saline–alkali land into cultivated land) affects soil C storage.We collected 189 adjacent pairs of salt-affected and cultivated soil samples(0–30 cm deep) from the Songnen Plain, eastern coastal area, Hetao Plain, and northwestern arid area in China. Various soil properties, the soil inorganic C(SIC), organic C(SOC), particulate organic C(POC), and mineral-associated organic C(MAOC) densities, and plant-and microbial-derived C accumulation were determined.Saline–alkali land reclamation inconsistently affected the SIC density but significantly(P < 0.001)increased the SOC density. The SOC, POC, and MAOC densities were predicted well by the integrative soil amelioration index. Saline–alkali land reclamation significantly increased plant-derived C accumulation and the plant-derived C to microbial-derived C ratios in all saline–alkali areas, and less microbial transformation of plant-derived C(i.e., less lignin degradation or oxidation) occurred in cultivated soils than salt-affected soils. The results indicated that saline–alkali land reclamation leads to plant-derived C becoming the dominant contributor of SOC storage. POC storage and MAOC storage were strongly linked to plant-and microbial-derived C accumulation, respectively, caused by saline–alkali land reclamation.Our findings suggest that saline–alkali land reclamation increases C storage in topsoil by preferentially promoting plant-derived C accumulation. 展开更多
关键词 Saline-alkali land Salt-affected soil Particulate organic carbon Mineral-associated organic carbon Plant-derived carbon
原文传递
Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline 被引量:11
7
作者 Guixiang Li Guorui Xu +3 位作者 congcong shen Yong Tang Yuxin Zhang Keming Ma 《Science China(Life Sciences)》 SCIE CAS CSCD 2016年第11期1177-1186,共10页
Above- and below-ground organisms are closely linked, but how elevational distribution pattern of soil microbes shifting across the treeline still remains unknown. Sampling of 140 plots with transect, we herein invest... Above- and below-ground organisms are closely linked, but how elevational distribution pattern of soil microbes shifting across the treeline still remains unknown. Sampling of 140 plots with transect, we herein investigated soil bacterial distribution pattern from a temperate forest up to a subalpine meadow along an elevational gradient using Illumina sequencing. Our results revealed distinct elevational patterns of bacterial diversity above and below the treeline in responding to changes in soil condi- tions: a hollow elevational pattern in the forest (correlated with soil temperature, pH, and C:N ratio) and a significantly de- creasing pattem in the meadow (correlated with soil pH, and available phosphorus). The bacterial community structure was also distinct between the forest and meadow, relating to soil pH in the forest and soil temperature in the meadow. Soil bacteria did not follow the distribution pattern of herb diversity, but bacterial community structure could be predicted by herb community composition. These results suggest that plant communities have an important influence on soil characteristics, and thus change the elevational distribution of soil bacteria. Our findings are useful for future assessments of climate change impacts on microbial community. 展开更多
关键词 elevational gradient TREELINE soil bacteria IHumina MiSeq diversity pattern community structure
原文传递
In-situ hydrophobic environment triggering reactive fluorescence probe to real-time monitor mitochondrial DNA damage 被引量:2
8
作者 Beidou Feng Huiyu Niu +2 位作者 Hongchen Zhai congcong shen Hua Zhang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第1期92-102,共11页
Mitochondrial DNA has a special structure that is prone to damage resulting in many serious diseases,such as genetic diseases and cancers.Therefore,the rapid and specific monitoring of mitochondrial DNA damage is urge... Mitochondrial DNA has a special structure that is prone to damage resulting in many serious diseases,such as genetic diseases and cancers.Therefore,the rapid and specific monitoring of mitochondrial DNA damage is urgently needed for biological recognition.Herein,we constructed an in situ hydrophobic environment-triggering reactive fluorescence probe named MBI-CN.The fluorophore was 2-styrene-1H-benzo[d]imidazole,and malononitrile was introduced as a core into a molecule to initiate the hydrolysis reaction in the specific environment containing damaged mitochondrial DNA.In this design,MBI-CN conjugates to mitochondrial DNA without causing additional damages.Thus,MBI-CN can be hydrolyzed to generate MBI-CHO in an in situ hydrophobic environment with mitochondrial DNA damage.Meanwhile,MBI-CHO immediately emitted a significative fluorescence signal changes at 437 and 553 nm within 25 s for the damaged mitochondria DNA.Give that the specific and rapid response of MBI-CN does not cause additional damages to mitochondrial DNA,it is a potentially effective detection tool for the real-time monitoring of mitochondrial DNA damage during cell apoptosis and initial assessment of cell apoptosis. 展开更多
关键词 hydrolysis reaction mitochondrial DNA damage in situ hydrophobic environment trigger fluorescence probe apoptosis
原文传递
Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal 被引量:2
9
作者 Fanlu Meng congcong shen +11 位作者 Li Yang Chao Ni Jianyong Huang Kaijun Lin Zanxia Cao Shicai Xu Wanling Cui Xiaoxin Wang Bailing Zhou Chunyang Xiong Jihua Wang Bing Zhao 《Cell Regeneration》 2022年第1期399-412,共14页
Intestinal organoids,derived from intestinal stem cell self-organization,recapitulate the tissue structures and behav-iors of the intestinal epithelium,which hold great potential for the study of developmental biology... Intestinal organoids,derived from intestinal stem cell self-organization,recapitulate the tissue structures and behav-iors of the intestinal epithelium,which hold great potential for the study of developmental biology,disease modeling,and regenerative medicine.The intestinal epithelium is exposed to dynamic mechanical forces which exert profound effects on gut development.However,the conventional intestinal organoid culture system neglects the key role of mechanical microenvironments but relies solely on biological factors.Here,we show that adding cyclic stretch to intestinal organoid cultures remarkably up-regulates the signature gene expression and proliferation of intestinal stem cells.Furthermore,mechanical stretching stimulates the expansion of SOX9+progenitors by activating the Wnt/β-Catenin signaling.These data demonstrate that the incorporation of mechanical stretch boosts the stemness of intestinal stem cells,thus benefiting organoid growth.Our findings have provided a way to optimize an organoid generation system through understanding cross-talk between biological and mechanical factors,paving the way for the application of mechanical forces in organoid-based models. 展开更多
关键词 Mechanical stretching Intestinal organoid Lgr5+stem cell REGENERATION Wnt/β-catenin signaling
原文传递
Self-Assembled DNA Machine and Selective Complexation Recognition Enable Rapid Homogeneous Portable Quantification of Lung Cancer CTCs
10
作者 Yue Wang congcong shen +4 位作者 Chengyong Wu Zixuan Zhan Runlian Qu Yi Xie Piaopiao Chen 《Research》 2024年第4期685-695,共11页
In this study,we systematically investigated the interactions between Cu^(2+)and various biomolecules,including double-stranded DNA,Y-shaped DNA nanospheres,the double strand of the hybridization chain reaction(HCR),t... In this study,we systematically investigated the interactions between Cu^(2+)and various biomolecules,including double-stranded DNA,Y-shaped DNA nanospheres,the double strand of the hybridization chain reaction(HCR),the network structure of cross-linked HCR(cHCR),and small molecules(PPi and His),using Cu^(2+)as an illustrative example.Our research demonstrated that the coordination between Cu^(2+)and these biomolecules not only is suitable for modulating luminescent material signals through complexation reactions with Cu^(2+)but also enhances signal intensities in materials based on chemical reactions by increasing spatial site resistance and local concentration.Building upon these findings,we harnessed the potential for signal amplification in self-assembled DNA nanospheres and the selective complexation modulation of calcein in conjunction with the aptamer targeting mucin 1 as a recognition probe.We applied this approach to the analysis of circulating tumor cells,with the lung cancer cell line A549 serving as a representative model. 展开更多
关键词 Lung complexation shaped
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部