We use several spectral vegetation indices obtained from UV-VIS-NIR spectroscopy to non-destructively evaluate chlorophyll, anthocyanin and flavonoid content in okra plants irradiated with 3 different artificial light...We use several spectral vegetation indices obtained from UV-VIS-NIR spectroscopy to non-destructively evaluate chlorophyll, anthocyanin and flavonoid content in okra plants irradiated with 3 different artificial light spectra in the blue, green and red regions of the electromagnetic spectrum;thus leading us to assess the effects of specific wavelength on the plants’ biochemical compounds and physiological state. The results show that blue light gives the highest anthocyanin and chlorophyll content, whereas the highest flavonoid content is found under red light. Therefore, these biochemical compounds with a well-known impact on human health, may be adjusted by selecting specific wavelengths to improve the quality of plants.展开更多
文摘We use several spectral vegetation indices obtained from UV-VIS-NIR spectroscopy to non-destructively evaluate chlorophyll, anthocyanin and flavonoid content in okra plants irradiated with 3 different artificial light spectra in the blue, green and red regions of the electromagnetic spectrum;thus leading us to assess the effects of specific wavelength on the plants’ biochemical compounds and physiological state. The results show that blue light gives the highest anthocyanin and chlorophyll content, whereas the highest flavonoid content is found under red light. Therefore, these biochemical compounds with a well-known impact on human health, may be adjusted by selecting specific wavelengths to improve the quality of plants.