How the state of living muscles modulates the features of nonlinear elastic waves generated by external dynamic loads remains unclear because of the challenge of directly observing and modeling nonlinear elastic waves...How the state of living muscles modulates the features of nonlinear elastic waves generated by external dynamic loads remains unclear because of the challenge of directly observing and modeling nonlinear elastic waves in skeletal muscles in vivo,considering their active deformation behavior.Here,this important issue is addressed by combining experiments performed with an ultrafast ultrasound imaging system to track nonlinear shear waves(shear shock waves)in muscles in vivo and finite element analysis relying on a physically motivated constitutive model to study the effect of muscle activation level.Skeletal muscle was loaded with a deep muscle stimulator to generate shear shock waves(SSWs).The particle velocities,second and third harmonics,and group velocities of the SSWs in living muscles under both passive and active states were measured in vivo.Our experimental results reveal,for the first time,that muscle states have a pronounced effect on wave features;a low level of activation may facilitate the occurrence of both the second and third harmonics,whereas a high level of activation may inhibit the third harmonic.Finite element analysis was further carried out to quantitatively explore the effect of active muscle deformation behavior on the generation and propagation of SSWs.The simulation results at different muscle activation levels confirmed the experimental findings.The ability to reveal the effects of muscle state on the features of SSWs may be helpful in elucidating the unique dynamic deformation mechanism of living skeletal muscles,quantitatively characterizing diverse shock wave-based therapy instruments,and guiding the design of muscle-mimicking soft materials.展开更多
As a new type of two-dimensional material,MXene’s unique layered structure,outstanding electrical conductivity,low density,tunable surface chemistry,and solution processability make it receive extensive attention in ...As a new type of two-dimensional material,MXene’s unique layered structure,outstanding electrical conductivity,low density,tunable surface chemistry,and solution processability make it receive extensive attention in various fields,especially for the lightweight shielding mate rials since the report on electromagnetic interference(EMI) shielding of 2D Ti3 C2 Tx in 2016.In this review,the progress on the MXe nes material including their synthetic strategies,prope rties and EMI application is highlighted.First,the recent advance on the different synthesis methods and properties of MXene is summarized.According to their intrinsic characteristics,the application of MXene in EMI fields is then discussed.Finally,the challenges and perspective on the future development of MXene in low-cost preparation and practical application are proposed.展开更多
The effects of mesogen-jacketed liquid crystalline polymer poly(dipropyl vinylterephthalate)(PDPVT) on the mechanical and thermal properties of diglycidyl ether of bisphenol-A(DGEBA) epoxy resin were investigated by i...The effects of mesogen-jacketed liquid crystalline polymer poly(dipropyl vinylterephthalate)(PDPVT) on the mechanical and thermal properties of diglycidyl ether of bisphenol-A(DGEBA) epoxy resin were investigated by impact test, tensile test and thermogravimetric analysis(TGA). The mechanism underlying the enhancement of mechanical properties of epoxy resin was studied using 1D wide-angle X-ray diffraction(WAXD) and scanning electron microscope(SEM). It was found that the mechanical properties of 1 wt%–5 wt% PDPVT/DGEBA composites were significantly improved compared to neat epoxy resin. Especially, the epoxy resin with 3 wt% PDPVT had the greatest increase in mechanical properties, with the impact strength, tensile strength and elongation while breaking increased by 87%, 59% and 174%, respectively. The increased mechanical strength was due to the fact that PDPVT maintained liquid crystalline phase in cured PDPVT/DGEBA composites, which would blunt the crack tip and prevent crack propagation. Moreover, PDPVT had slight effect on the thermal stability properties of epoxy resin.展开更多
ZIF-8 with excellent chemical and physical properties is a promising material for the field of electrochemical sensing.However,the poor electrical conductivity of ZIF-8 severely limits its electrochemical performance....ZIF-8 with excellent chemical and physical properties is a promising material for the field of electrochemical sensing.However,the poor electrical conductivity of ZIF-8 severely limits its electrochemical performance.Here,we report a method that can significantly improve the conductivity of ZIF-8 by intercalating Ti_(3)C_(2)T_(x) MXene as a conductive platform.Benefiting from higher conductivity and unique electrocatalytic activity,the obtained MXene/ZIF-8 nanocomposite presented the worthy analytical performance for hydrazine sensing.The successful fabrication of MXene/ZIF-8 holds great promise for the design of electrochemical sensors,and it is a promising material to promote the development of new electrode materials.展开更多
基金supported by the National Students Training Program for Innovation(Grant No.202210007029)。
文摘How the state of living muscles modulates the features of nonlinear elastic waves generated by external dynamic loads remains unclear because of the challenge of directly observing and modeling nonlinear elastic waves in skeletal muscles in vivo,considering their active deformation behavior.Here,this important issue is addressed by combining experiments performed with an ultrafast ultrasound imaging system to track nonlinear shear waves(shear shock waves)in muscles in vivo and finite element analysis relying on a physically motivated constitutive model to study the effect of muscle activation level.Skeletal muscle was loaded with a deep muscle stimulator to generate shear shock waves(SSWs).The particle velocities,second and third harmonics,and group velocities of the SSWs in living muscles under both passive and active states were measured in vivo.Our experimental results reveal,for the first time,that muscle states have a pronounced effect on wave features;a low level of activation may facilitate the occurrence of both the second and third harmonics,whereas a high level of activation may inhibit the third harmonic.Finite element analysis was further carried out to quantitatively explore the effect of active muscle deformation behavior on the generation and propagation of SSWs.The simulation results at different muscle activation levels confirmed the experimental findings.The ability to reveal the effects of muscle state on the features of SSWs may be helpful in elucidating the unique dynamic deformation mechanism of living skeletal muscles,quantitatively characterizing diverse shock wave-based therapy instruments,and guiding the design of muscle-mimicking soft materials.
文摘As a new type of two-dimensional material,MXene’s unique layered structure,outstanding electrical conductivity,low density,tunable surface chemistry,and solution processability make it receive extensive attention in various fields,especially for the lightweight shielding mate rials since the report on electromagnetic interference(EMI) shielding of 2D Ti3 C2 Tx in 2016.In this review,the progress on the MXe nes material including their synthetic strategies,prope rties and EMI application is highlighted.First,the recent advance on the different synthesis methods and properties of MXene is summarized.According to their intrinsic characteristics,the application of MXene in EMI fields is then discussed.Finally,the challenges and perspective on the future development of MXene in low-cost preparation and practical application are proposed.
基金financially supported by the National Natural Science Foundation of China(51343008)
文摘The effects of mesogen-jacketed liquid crystalline polymer poly(dipropyl vinylterephthalate)(PDPVT) on the mechanical and thermal properties of diglycidyl ether of bisphenol-A(DGEBA) epoxy resin were investigated by impact test, tensile test and thermogravimetric analysis(TGA). The mechanism underlying the enhancement of mechanical properties of epoxy resin was studied using 1D wide-angle X-ray diffraction(WAXD) and scanning electron microscope(SEM). It was found that the mechanical properties of 1 wt%–5 wt% PDPVT/DGEBA composites were significantly improved compared to neat epoxy resin. Especially, the epoxy resin with 3 wt% PDPVT had the greatest increase in mechanical properties, with the impact strength, tensile strength and elongation while breaking increased by 87%, 59% and 174%, respectively. The increased mechanical strength was due to the fact that PDPVT maintained liquid crystalline phase in cured PDPVT/DGEBA composites, which would blunt the crack tip and prevent crack propagation. Moreover, PDPVT had slight effect on the thermal stability properties of epoxy resin.
文摘ZIF-8 with excellent chemical and physical properties is a promising material for the field of electrochemical sensing.However,the poor electrical conductivity of ZIF-8 severely limits its electrochemical performance.Here,we report a method that can significantly improve the conductivity of ZIF-8 by intercalating Ti_(3)C_(2)T_(x) MXene as a conductive platform.Benefiting from higher conductivity and unique electrocatalytic activity,the obtained MXene/ZIF-8 nanocomposite presented the worthy analytical performance for hydrazine sensing.The successful fabrication of MXene/ZIF-8 holds great promise for the design of electrochemical sensors,and it is a promising material to promote the development of new electrode materials.