Accurate and efficient prediction of the aerodynamic performance and flow details of axial-flow com-pressors is of great engineering application value for the aerodynamic design and flow control of axial-flow compres-...Accurate and efficient prediction of the aerodynamic performance and flow details of axial-flow com-pressors is of great engineering application value for the aerodynamic design and flow control of axial-flow compres-sors.In this work,a delayed detached eddy simulation method is developed and applied to numerically simulate the tur-bulent channel flow and the aerodynamic performance of NASA Rotor 35.Several acceleration techniques including parallel implementation are also used to speed up the iteration convergence.The mean velocity distribution and Reyn-olds stress distribution in the boundary layer of turbulent channel flow and the aerodynamic performance curve of NASA Rotor 35 are predicted.The good agreement between the present delayed detached eddy simulation results and the available direct numerical simulation results or experimental data confirms the effectiveness of the developed meth-od in the accurate and efficient prediction of complex flow in turbomachinery.展开更多
The vortex pump has increasingly become an important alternative or supplement to the centrifugal pump, the positive displacement pump and the diffusion pump due to its capacity of developing a high head at a small fl...The vortex pump has increasingly become an important alternative or supplement to the centrifugal pump, the positive displacement pump and the diffusion pump due to its capacity of developing a high head at a small flow rate within a single stage. However, the vortex pumps with various blade shapes such as the twisted blades or the 3-D blades are not well studied. In this paper, some new concepts of the 2-D and 3-D corner blades are introduced for the design of the vortex pumps. The mechanism behind the effect of the corner blade shapes on the pump hydraulic performance is numerically investigated and elucidated in terms of the internal vortex structures. The results show that both 2-D and 3-D forward corner blades can induce stronger well-organized longitudinal vortices as well as smaller axial and radial vortices within the impeller blade passage, which benefit a higher pump head and a higher efficiency in comparison with the traditional radial straight blade. This study provides useful guidelines for the design of advanced vortex pumps.展开更多
基金The National Key Research and Development Project of China under Grant No.2016YFB0200903National Natural Science Foundation of China under Grant No.51776154Shaanxi Key Research and Development Project under Grant No.S2018-YF-GHZD-0004
基金National Science and Technology Major Project of China(No.2017-II 0006-0020)National Key Research and Development Project of China(2016YFB0200901)National Natural Science Foundation of China(51776154)。
文摘Accurate and efficient prediction of the aerodynamic performance and flow details of axial-flow com-pressors is of great engineering application value for the aerodynamic design and flow control of axial-flow compres-sors.In this work,a delayed detached eddy simulation method is developed and applied to numerically simulate the tur-bulent channel flow and the aerodynamic performance of NASA Rotor 35.Several acceleration techniques including parallel implementation are also used to speed up the iteration convergence.The mean velocity distribution and Reyn-olds stress distribution in the boundary layer of turbulent channel flow and the aerodynamic performance curve of NASA Rotor 35 are predicted.The good agreement between the present delayed detached eddy simulation results and the available direct numerical simulation results or experimental data confirms the effectiveness of the developed meth-od in the accurate and efficient prediction of complex flow in turbomachinery.
基金Project supported by the National Key Research and Development Project of China(Grant No.2016YFB0200903)the National Natural Science Foundation of China(Grant No.51776154)
文摘The vortex pump has increasingly become an important alternative or supplement to the centrifugal pump, the positive displacement pump and the diffusion pump due to its capacity of developing a high head at a small flow rate within a single stage. However, the vortex pumps with various blade shapes such as the twisted blades or the 3-D blades are not well studied. In this paper, some new concepts of the 2-D and 3-D corner blades are introduced for the design of the vortex pumps. The mechanism behind the effect of the corner blade shapes on the pump hydraulic performance is numerically investigated and elucidated in terms of the internal vortex structures. The results show that both 2-D and 3-D forward corner blades can induce stronger well-organized longitudinal vortices as well as smaller axial and radial vortices within the impeller blade passage, which benefit a higher pump head and a higher efficiency in comparison with the traditional radial straight blade. This study provides useful guidelines for the design of advanced vortex pumps.