Activated carbon was prepared from cattail by H3PO4 activation. The effects influencing the surface area of the resulting activated carbon followed the sequence of activated temperature 〉 activated time 〉 impregnati...Activated carbon was prepared from cattail by H3PO4 activation. The effects influencing the surface area of the resulting activated carbon followed the sequence of activated temperature 〉 activated time 〉 impregnation ratio 〉 impregnation time. The optimum condition was found at an impregnation ratio of 2.5, an impregnation time of 9 hr, an activated temperature of 500℃, and an activated time of 80 min. The Brunauer-Emmett-Teller surface area and average pore size of the activated carbon were 1279 m^2/g and 5.585 nm, respectively. A heterogeneous structure in terms of both size and shape was highly developed and widely distributed on the carbon surface. Some groups containing oxygen and phosphorus were formed, and the carboxyl group was the major oxygen-containing functional group. An isotherm equilibrium study was carried out to investigate the adsorption capacity of the activated carbon. The data fit the Langmuir isotherm equation, with maximum monolayer adsorption capacities of 192.30 mg/g for Neutral Red and 196.08 mg/g for Malachite Green. Dye-exhausted carbon could be regenerated effectively by thermal treatment. The results indicated that cattail-derived activated carbon was a promising adsorbent for the removal of cationic dyes from aqueous solutions.展开更多
Fibrosis is a necessary process in the progression of chronic disease to cirrhosis or even cancer,which is a serious disease threatening human health.Recent studies have shown that the early treatment of fibrosis is t...Fibrosis is a necessary process in the progression of chronic disease to cirrhosis or even cancer,which is a serious disease threatening human health.Recent studies have shown that the early treatment of fibrosis is turning point and particularly important.Therefore,how to reverse fibrosis has become the focus and research hotspot in recent years.So far,the considerable progress has been made in the development of effective anti-fibrosis drugs and targeted drug delivery.Moreover,the existing research results will lay the foundation for more breakthrough delivery systems to achieve better anti-fibrosis effects.Herein,this review summaries anti-fibrosis delivery systems focused on three major organ fibrotic diseases such as liver,pulmonary,and renal fibrosis accompanied by the elaboration of relevant pathological mechanisms,which will provide inspiration and guidance for the design of fibrosis drugs and therapeutic systems in the future.展开更多
Parkinson's disease(PD)is a neurodegeneration disease withα-synuclein accumulated in the substantia nigra pars compacta(SNpc)and most of the dopaminergic neurons are lost in SNpc while patients are diagnosed with...Parkinson's disease(PD)is a neurodegeneration disease withα-synuclein accumulated in the substantia nigra pars compacta(SNpc)and most of the dopaminergic neurons are lost in SNpc while patients are diagnosed with PD.Exploring the pathology at an early stage contributes to the development of the disease-modifying strategy.Although the“gut–brain”hypothesis is proposed to explain the underlying mechanism,where the earlier lesioned site in the brain of gastricα-synuclein and howα-synuclein further spreads are not fully understood.Here we report that caudal raphe nuclei(CRN)are the early lesion site of gastricα-synuclein propagating through the spinal cord,while locus coeruleus(LC)and substantia nigra pars compacta(SNpc)were further affected over a time frame of 7 months.Pathologicalα-synuclein propagation via CRN leads to neuron loss and disordered neuron activity,accompanied by abnormal motor and non-motor behavior.Potential neuron circuits are observed among CRN,LC,and SNpc,which contribute to the venerability of dopaminergic neurons in SNpc.These results show that CRN is the key region for the gastricα-synuclein spread to the midbrain.Our study provides valuable details for the“gut–brain”hypothesis and proposes a valuable PD model for future research on early PD intervention.展开更多
To evaluate the ecological effects of lakeshore wetland rehabilitation on the eastern route of the Southto-NorthWater Transfer Project,species composition,coverage,height,and biomass of wetland communities at 22 sites...To evaluate the ecological effects of lakeshore wetland rehabilitation on the eastern route of the Southto-NorthWater Transfer Project,species composition,coverage,height,and biomass of wetland communities at 22 sites of the study area on the shore of Nansi Lake in April and May 2007 were investigated.The wetlands under investigation were divided into platform fields,transition zones,and shallow water zones according to differences in elevations,water levels,and human activities.The species richness index,Shannon-Wiener index,Simpson index,and Pielou Evenness index were adopted to delineate and discuss the ecological effects of lakeshore wetland rehabilitation in 22 quadrates.Results showed that the species richness of the wetland areas after 2 years’rehabilitation amounted to 47 of 24 families,higher than 25 of 20 families in areas without rehabilitation.The biodiversity index and abundance index of rehabilitated areas were also higher than those of platform fields and fish ponds where there was no rehabilitation.In addition,the Shannon-Wiener index,Simpson index,and community evenness index of platform fields in rehabilitated wetland areas were 1.619,0.745,and 0.860,respectively,higher than those of the platform fields before rehabilitating.The results suggested that the constructed lakeshore wetland played an important role in protecting the diversity of species.展开更多
基金supported by the National Key Technology R&D Program for the 11th Five-year Plan of China (No.2006BAC10B03)the National Natural Science Foundation of China-Japan Science and Technology Agency (NSFC-JST) Strategic Joint Research Project (No.50721140017)the National Natural Science Foundation of China (No.50508019)
文摘Activated carbon was prepared from cattail by H3PO4 activation. The effects influencing the surface area of the resulting activated carbon followed the sequence of activated temperature 〉 activated time 〉 impregnation ratio 〉 impregnation time. The optimum condition was found at an impregnation ratio of 2.5, an impregnation time of 9 hr, an activated temperature of 500℃, and an activated time of 80 min. The Brunauer-Emmett-Teller surface area and average pore size of the activated carbon were 1279 m^2/g and 5.585 nm, respectively. A heterogeneous structure in terms of both size and shape was highly developed and widely distributed on the carbon surface. Some groups containing oxygen and phosphorus were formed, and the carboxyl group was the major oxygen-containing functional group. An isotherm equilibrium study was carried out to investigate the adsorption capacity of the activated carbon. The data fit the Langmuir isotherm equation, with maximum monolayer adsorption capacities of 192.30 mg/g for Neutral Red and 196.08 mg/g for Malachite Green. Dye-exhausted carbon could be regenerated effectively by thermal treatment. The results indicated that cattail-derived activated carbon was a promising adsorbent for the removal of cationic dyes from aqueous solutions.
基金financially supported by the National Science and Technology Major Project(2017YFA0205400)the National Natural Science Foundation of China(81773667,81573369)+2 种基金NSFC Projects of International Cooperation and Exchanges(81811540416)the“111”Project from the Ministry of Education of Chinathe State Administration of Foreign Experts Affairs of China(D17010).
文摘Fibrosis is a necessary process in the progression of chronic disease to cirrhosis or even cancer,which is a serious disease threatening human health.Recent studies have shown that the early treatment of fibrosis is turning point and particularly important.Therefore,how to reverse fibrosis has become the focus and research hotspot in recent years.So far,the considerable progress has been made in the development of effective anti-fibrosis drugs and targeted drug delivery.Moreover,the existing research results will lay the foundation for more breakthrough delivery systems to achieve better anti-fibrosis effects.Herein,this review summaries anti-fibrosis delivery systems focused on three major organ fibrotic diseases such as liver,pulmonary,and renal fibrosis accompanied by the elaboration of relevant pathological mechanisms,which will provide inspiration and guidance for the design of fibrosis drugs and therapeutic systems in the future.
基金This work was supported by the Natural Science Foundation of Beijing Municipality(No.7212156,China)CAMS Innovation Fund for Medical Sciences(CIFMS,2021-I2M-1–026,China)National Natural Science Foundation of China,China(82373852).
文摘Parkinson's disease(PD)is a neurodegeneration disease withα-synuclein accumulated in the substantia nigra pars compacta(SNpc)and most of the dopaminergic neurons are lost in SNpc while patients are diagnosed with PD.Exploring the pathology at an early stage contributes to the development of the disease-modifying strategy.Although the“gut–brain”hypothesis is proposed to explain the underlying mechanism,where the earlier lesioned site in the brain of gastricα-synuclein and howα-synuclein further spreads are not fully understood.Here we report that caudal raphe nuclei(CRN)are the early lesion site of gastricα-synuclein propagating through the spinal cord,while locus coeruleus(LC)and substantia nigra pars compacta(SNpc)were further affected over a time frame of 7 months.Pathologicalα-synuclein propagation via CRN leads to neuron loss and disordered neuron activity,accompanied by abnormal motor and non-motor behavior.Potential neuron circuits are observed among CRN,LC,and SNpc,which contribute to the venerability of dopaminergic neurons in SNpc.These results show that CRN is the key region for the gastricα-synuclein spread to the midbrain.Our study provides valuable details for the“gut–brain”hypothesis and proposes a valuable PD model for future research on early PD intervention.
基金This work was supported by the Key Technologies Research and Development Program of the Eleventh Five-Year Plan of China(Grant No.2006BAC10B03)the National Natural Science Foundation of China-Japan Science and Technology Agency(NSFCJST)Strategic Joint Research Project(Grant No.50721140017)the National Natural Science Foundation of China(Grant No.50508019).
文摘To evaluate the ecological effects of lakeshore wetland rehabilitation on the eastern route of the Southto-NorthWater Transfer Project,species composition,coverage,height,and biomass of wetland communities at 22 sites of the study area on the shore of Nansi Lake in April and May 2007 were investigated.The wetlands under investigation were divided into platform fields,transition zones,and shallow water zones according to differences in elevations,water levels,and human activities.The species richness index,Shannon-Wiener index,Simpson index,and Pielou Evenness index were adopted to delineate and discuss the ecological effects of lakeshore wetland rehabilitation in 22 quadrates.Results showed that the species richness of the wetland areas after 2 years’rehabilitation amounted to 47 of 24 families,higher than 25 of 20 families in areas without rehabilitation.The biodiversity index and abundance index of rehabilitated areas were also higher than those of platform fields and fish ponds where there was no rehabilitation.In addition,the Shannon-Wiener index,Simpson index,and community evenness index of platform fields in rehabilitated wetland areas were 1.619,0.745,and 0.860,respectively,higher than those of the platform fields before rehabilitating.The results suggested that the constructed lakeshore wetland played an important role in protecting the diversity of species.