In thermoelectrics,doping is essential to augment the figure of merit.Traditional strategy,predomina ntly heavy doping,aims to optimize carrier concentration and restrain lattice thermal conductivity.However,this tact...In thermoelectrics,doping is essential to augment the figure of merit.Traditional strategy,predomina ntly heavy doping,aims to optimize carrier concentration and restrain lattice thermal conductivity.However,this tactic can severely hamper carrier transport due to pronounced point defect scattering,particularly in materials with inherently low carrier mean-free-path.Conversely,dilute doping,although minimally affecting carrier mobility,frequently fails to optimize other vital thermoelectric parameters.Herein,we present a more nuanced dilute doping strategy in GeTe,leveraging the multifaceted roles of small-size metal atoms.A mere 4%CuPbSbTe_(3)introduction into GeTe swiftly suppresses rhombohedral distortion and optimizes carrier concentration through the aid of Cu interstitials.Additionally,the formation of multiscale microstructures,including zero-dimensional Cu interstitials,one-dimensional dislocations,two-dimensional planar defects,and three-dimensional nanoscale amorphous GeO_(2)and Cu_(2)GeTe_(3)precipitates,along with the ensuing lattice softening,contributes to an ultralow lattice thermal conductivity.Intriguingly,dilute CuPbSbTe_(3)doping incurs only a marginal decrease in carrier mobility.Subsequent trace Cd doping,employed to alleviate the bipolar effect and align the valence bands,yields an impressive figure-of-merit of 2.03 at 623 K in(Ge_(0.97)Cd_(0.03)Te)_(0.96)(CuPbSbTe_(3))_(0.04).This leads to a high energyconversion efficiency of 7.9%and a significant power density of 3.44 W cm^(-2)at a temperature difference of 500 K.These results underscore the invaluable insights gained into the constructive role of nuanced dilute doping in the concurrent tuning of carrier and phonon transport in GeTe and other thermoelectric materials.展开更多
Exploration of metastable phases holds profound implications for functional materials.Herein,we engineer the metastable phase to enhance the thermo-electric performance of germanium selenide(GeSe)through tailoring the...Exploration of metastable phases holds profound implications for functional materials.Herein,we engineer the metastable phase to enhance the thermo-electric performance of germanium selenide(GeSe)through tailoring the chemical bonding mechanism.Initially,AgInTe2 alloying fosters a transition from stable orthorhombic to metastable rhombohedral phase in GeSe by substantially promoting p-state electron bonding to form metavalent bonding(MVB).Besides,extra Pb is employed to prevent a transition into a stable hexagonal phase at elevated temperatures by moderately enhancing the degree of MVB.The stabilization of the metastable rhombohedral phase generates an optimized bandgap,sharpened valence band edge,and stimulative band convergence compared to stable phases.This leads to decent carrier concentra-tion,improved carrier mobility,and enhanced density-of-state effective mass,culminating in a superior power factor.Moreover,lattice thermal conductivity is suppressed by pronounced lattice anharmonicity,low sound velocity,and strong phonon scattering induced by multiple defects.Consequently,a maximum zT of 1.0 at 773 K is achieved in(Ge_(0.98)Pb_(0.02)Se)_(0.875)(AgInTe_(2))_(0.125),resulting in a maximum energy conversion efficiency of 4.90%under the temperature difference of 500 K.This work underscores the significance of regulating MVB to stabilize metastable phases in chalcogenides.展开更多
When two-dimensional graphene is exfoliated from three-dimensional highly oriented pyrolytic graphite (HOPG), ripples or corrugations always exist due to the intrinsic thermal fluctuations. Surface-grown graphenes a...When two-dimensional graphene is exfoliated from three-dimensional highly oriented pyrolytic graphite (HOPG), ripples or corrugations always exist due to the intrinsic thermal fluctuations. Surface-grown graphenes also exhibit wrinkles, which are larger in dimension and are thought to be caused by the difference in thermal expansion coefficients between graphene and the underlying substrate in the cooling process after high temperature growth. For further characterization and applications, it is necessary to transfer the surface-grown graphenes onto dielectric substrates, and other wrinkles are generated during this process. Here, we focus on the wrinkles of transferred graphene and demonstrate that the surface morphology of the growth substrate is the origin of the new wrinkles which arise in the surface-to-surface transfer process; we call these morphology- induced wrinkles. Based on a careful statistical analysis of thousands of atomic force microscopy (AFM) topographic data, we have concluded that these wrinkles on transferred few-layer graphene (typically 1-3 layers) are determined by both the growth substrate morphology and the transfer process. Depending on the transfer medium and conditions, most of the wrinkles can be either released or preserved. Our work suggests a new route for graphene engineering involving structuring the growth substrate and tailoring the transfer process.展开更多
To date,the benchmark Bi_(2)Te_(3)-based alloys are still the only commercial material system used for ther-moelectric solid-state refrigeration.Nonetheless,the conspicuous performance imbalance between the p-type Bi_...To date,the benchmark Bi_(2)Te_(3)-based alloys are still the only commercial material system used for ther-moelectric solid-state refrigeration.Nonetheless,the conspicuous performance imbalance between the p-type Bi_(2-x)Sb_(x)Te_(3)and n-type Bi_(2)Te_(3-x)Se_(x) legs has become a major obstacle for the improvement of cooling devices to achieve higher efficiency.In our previous study,novel n-type Bi_(2-x)Sb_(x)Te_(3)alloy has been pro-posed via manipulating donor-like effect as an alternative to mainstream n-type Bi_(2)Te_(3-x)Se_(x).However,the narrow bandgap of Bi_(2-x)Sb_(x)Te_(3)provoked severe bipolar effect that constrained the further improvement of zT near room temperature.Herein,we have implemented band gap engineering in n-type Bi_(1.5)Sb_(0.5)Te_(3)by employing isovalent Se substitution to inhibit the undesired intrinsic excitation and achieve the dis-tinguished room-temperature zT.First,the preferential occupancy of Se at Te^(2)site appropriately enlarges the band gap,thereby concurrently improving the Seebeck coefficient and depressing the bipolar thermal conductivity.In addition,the Se alloying mildly suppresses the compensation mechanism and essentially preserves the already optimized carrier concentration,which maintains the peak zT near room tempera-ture.Moreover,the large strain field and mass fluctuation generated by Se alloying leads to the remark-able reduction of lattice thermal conductivity.Accordingly,the zT value of Bi_(1.5)Sb_(0.5)Te_(2.8)Se_(0.2)reaches 1.0 at 300 K and peaks 1.1 at 360 K,which surpasses that of most well-known room-temperature n-type thermoelectric materials.These results pave the way for n-type Bi_(2-x)Sb_(x)Te_(3)alloys to become a new and promising top candidate for large-scale solid-state cooling applications.展开更多
The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Her...The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Here, a facile bottom-up solution-synthesis with spark plasma sintering(SPS) process has been developed to build n-type Bi2Te3-xSex bulk nanocomposites, which substantially improves the power factor and decreases the lattice thermal conductivity by tuning the interface scattering of phonons and electrons. The stoichiometric composition in ternary Bi2Te3-xSex nanocomposites is also tuned to optimize the carrier concentration and lattice thermal conductivity. The optimized bulk nanocomposite Bi2Te2.7Se0.3 exhibits a ZT of 1.1 at^371 K, which is comparable to the corresponding commercially available ingots. Our results demonstrate the great potential of the solution-processed n-type Bi2Te3-xSex nanocomposites for cost-effective thermoelectric applications.展开更多
In thermoelectrics,phase engineering serves a crucial function in deter-mining the power factor by affecting the band degeneracy.However,for low-symmetry compounds,the mainstream one-step phase manipulation strategy,d...In thermoelectrics,phase engineering serves a crucial function in deter-mining the power factor by affecting the band degeneracy.However,for low-symmetry compounds,the mainstream one-step phase manipulation strategy,depending solely on the valley or orbital degeneracy,is inadequate to attain a high density-of-states effective mass and exceptional zT.Here,we employ a distinctive two-step phase manipulation strategy through stepwise tailoring chemical bonds in GeSe.Initially,we amplify the valley degeneracy via CdTe alloying,which elevates the crystal symmetry from a covalently bonded orthorhombic to a metavalently bonded rhombohedral phase by significantly suppressing the Peierls distortion.Subsequently,we incorporate Pb to trigger the convergence of multivalence bands and further enhance the density-of-states effective mass by moderately restraining the Peierls distortion.Additionally,the atypical metavalent bonding in rhombohedral GeSe enables a high Ge vacancy concentration and a small band effective mass,leading to increased carrier concentration and mobility.This weak chemical bond along with strong lattice anharmonicity also reduces lattice thermal conductivity.Consequently,this unique property ensemble contributes to an outstanding zT of 0.9 at 773 K for Geo.8oPbo.2oSe(CdTe)o.25.This work underscores the pivotal role of the two-step phase manipulation by stepwise tailoring of chemical bonds in improving the thermoelectric performance of p-bonded chalcogenides.展开更多
The table-like magnetocaloric effect is significant for the magnetic refrigeration applications above 20 K based on the Ericsson cycle.Herein,we prepared a series of Nd_(6)Fe_(13)Pd_(1-x)Cu_(x)(x=0.05,0.1,0.15)compoun...The table-like magnetocaloric effect is significant for the magnetic refrigeration applications above 20 K based on the Ericsson cycle.Herein,we prepared a series of Nd_(6)Fe_(13)Pd_(1-x)Cu_(x)(x=0.05,0.1,0.15)compounds by the arc-melting method.These compounds show the single crystalline phase in the tetragonal Nd_(6)Fe_(13)Si-type structure with the space group I4/mcm.A magnetic phase transition from ferromagnetism to antiferromagnetism and a metamagnetic transition from the antiferromagnetic state to the ferromagnetic state are observed in each of the compounds.The compounds exhibit table-like magnetocaloric effects with large refrigerant capacities.A constantΔSM in a temperature span of 40 K in the Nd_(6)Fe_(13)Pd_(0.85)Cu_(0.15) compound are observed.For a field change of 0–5 T,the peak values of–ΔS_(M) for the Nd_(6)Fe_(13)Pd_(0.95)Cu_(0.05),Nd_(6)Fe_(13)Pd_(0.90)Cu_(0.10),and Nd_(6)Fe_(13)Pd_(0.85)Cu_(0.15) compounds are estimated to be 4.8,4.6 and 4.4 J/(kg·K)with corresponding refrigerant capacity values of 323,331 and 316 J/kg,respectively.The obtained table-like magnetocaloric effects with large refrigerant capacities as well as fairly small thermal and magnetic hysteresis deem these series of compounds good candidates for single-phase magnetic refrigeration based on the Ericsson cycle.展开更多
基金supported by the National Key R&D Program of China(2021YFB1507403)the National Natural Science Foundation of China(52071218,and 11874394)+1 种基金the Shenzhen University 2035 Program for Excellent Research(00000218)The University Synergy Innovation Program of Anhui Province(GXXT-2020-003)。
文摘In thermoelectrics,doping is essential to augment the figure of merit.Traditional strategy,predomina ntly heavy doping,aims to optimize carrier concentration and restrain lattice thermal conductivity.However,this tactic can severely hamper carrier transport due to pronounced point defect scattering,particularly in materials with inherently low carrier mean-free-path.Conversely,dilute doping,although minimally affecting carrier mobility,frequently fails to optimize other vital thermoelectric parameters.Herein,we present a more nuanced dilute doping strategy in GeTe,leveraging the multifaceted roles of small-size metal atoms.A mere 4%CuPbSbTe_(3)introduction into GeTe swiftly suppresses rhombohedral distortion and optimizes carrier concentration through the aid of Cu interstitials.Additionally,the formation of multiscale microstructures,including zero-dimensional Cu interstitials,one-dimensional dislocations,two-dimensional planar defects,and three-dimensional nanoscale amorphous GeO_(2)and Cu_(2)GeTe_(3)precipitates,along with the ensuing lattice softening,contributes to an ultralow lattice thermal conductivity.Intriguingly,dilute CuPbSbTe_(3)doping incurs only a marginal decrease in carrier mobility.Subsequent trace Cd doping,employed to alleviate the bipolar effect and align the valence bands,yields an impressive figure-of-merit of 2.03 at 623 K in(Ge_(0.97)Cd_(0.03)Te)_(0.96)(CuPbSbTe_(3))_(0.04).This leads to a high energyconversion efficiency of 7.9%and a significant power density of 3.44 W cm^(-2)at a temperature difference of 500 K.These results underscore the invaluable insights gained into the constructive role of nuanced dilute doping in the concurrent tuning of carrier and phonon transport in GeTe and other thermoelectric materials.
基金National Key R&D Program of China,Grant/Award Number:2021YFB1507403National Natural Science Foundation of China,Grant/Award Number:52071218+1 种基金China Postdoctoral Science Foundation,Grant/Award Number:2022M722170Shenzhen University 2035 Program for Excellent Research,Grant/Award Number:00000218。
文摘Exploration of metastable phases holds profound implications for functional materials.Herein,we engineer the metastable phase to enhance the thermo-electric performance of germanium selenide(GeSe)through tailoring the chemical bonding mechanism.Initially,AgInTe2 alloying fosters a transition from stable orthorhombic to metastable rhombohedral phase in GeSe by substantially promoting p-state electron bonding to form metavalent bonding(MVB).Besides,extra Pb is employed to prevent a transition into a stable hexagonal phase at elevated temperatures by moderately enhancing the degree of MVB.The stabilization of the metastable rhombohedral phase generates an optimized bandgap,sharpened valence band edge,and stimulative band convergence compared to stable phases.This leads to decent carrier concentra-tion,improved carrier mobility,and enhanced density-of-state effective mass,culminating in a superior power factor.Moreover,lattice thermal conductivity is suppressed by pronounced lattice anharmonicity,low sound velocity,and strong phonon scattering induced by multiple defects.Consequently,a maximum zT of 1.0 at 773 K is achieved in(Ge_(0.98)Pb_(0.02)Se)_(0.875)(AgInTe_(2))_(0.125),resulting in a maximum energy conversion efficiency of 4.90%under the temperature difference of 500 K.This work underscores the significance of regulating MVB to stabilize metastable phases in chalcogenides.
基金The research was supported by the Natural Science Foundation of China (Grants Nos. 51072004, 50802003, 20973013, and 50821061) and the Ministry of Science and Technology of China (Grants Nos. 2007CB936203, 2009CB29403, 2011CB933003, and 2011CB921903).
文摘When two-dimensional graphene is exfoliated from three-dimensional highly oriented pyrolytic graphite (HOPG), ripples or corrugations always exist due to the intrinsic thermal fluctuations. Surface-grown graphenes also exhibit wrinkles, which are larger in dimension and are thought to be caused by the difference in thermal expansion coefficients between graphene and the underlying substrate in the cooling process after high temperature growth. For further characterization and applications, it is necessary to transfer the surface-grown graphenes onto dielectric substrates, and other wrinkles are generated during this process. Here, we focus on the wrinkles of transferred graphene and demonstrate that the surface morphology of the growth substrate is the origin of the new wrinkles which arise in the surface-to-surface transfer process; we call these morphology- induced wrinkles. Based on a careful statistical analysis of thousands of atomic force microscopy (AFM) topographic data, we have concluded that these wrinkles on transferred few-layer graphene (typically 1-3 layers) are determined by both the growth substrate morphology and the transfer process. Depending on the transfer medium and conditions, most of the wrinkles can be either released or preserved. Our work suggests a new route for graphene engineering involving structuring the growth substrate and tailoring the transfer process.
基金supported by the National Natural Science Foundation of China(52071218)Shenzhen Science and Technology Innovation Commission(20200731215211001 and 20200814110413001)Guangdong Basic and Applied Basic Research Foundation(2022A1515012492)。
基金The work is supported by the National Natural Science Foundation of China(No.52071218)Shenzhen Science and Technology Innovation Commission(Nos.20200731215211001,20200814110413001)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012492).The authors also appreciate the Instrumental Analysis Center of Shenzhen University.
文摘To date,the benchmark Bi_(2)Te_(3)-based alloys are still the only commercial material system used for ther-moelectric solid-state refrigeration.Nonetheless,the conspicuous performance imbalance between the p-type Bi_(2-x)Sb_(x)Te_(3)and n-type Bi_(2)Te_(3-x)Se_(x) legs has become a major obstacle for the improvement of cooling devices to achieve higher efficiency.In our previous study,novel n-type Bi_(2-x)Sb_(x)Te_(3)alloy has been pro-posed via manipulating donor-like effect as an alternative to mainstream n-type Bi_(2)Te_(3-x)Se_(x).However,the narrow bandgap of Bi_(2-x)Sb_(x)Te_(3)provoked severe bipolar effect that constrained the further improvement of zT near room temperature.Herein,we have implemented band gap engineering in n-type Bi_(1.5)Sb_(0.5)Te_(3)by employing isovalent Se substitution to inhibit the undesired intrinsic excitation and achieve the dis-tinguished room-temperature zT.First,the preferential occupancy of Se at Te^(2)site appropriately enlarges the band gap,thereby concurrently improving the Seebeck coefficient and depressing the bipolar thermal conductivity.In addition,the Se alloying mildly suppresses the compensation mechanism and essentially preserves the already optimized carrier concentration,which maintains the peak zT near room tempera-ture.Moreover,the large strain field and mass fluctuation generated by Se alloying leads to the remark-able reduction of lattice thermal conductivity.Accordingly,the zT value of Bi_(1.5)Sb_(0.5)Te_(2.8)Se_(0.2)reaches 1.0 at 300 K and peaks 1.1 at 360 K,which surpasses that of most well-known room-temperature n-type thermoelectric materials.These results pave the way for n-type Bi_(2-x)Sb_(x)Te_(3)alloys to become a new and promising top candidate for large-scale solid-state cooling applications.
基金supported by the Natural Science Foundation of SZU (2017003)Shenzhen Science and Technology Research Grant (JCYJ20150324141711684)+2 种基金Singapore National Research Foundation (NRF-RF2009-06)an Investigator-ship Award (NRFNRFI2015-03)Ministry of Education (Singapore) via an AcRF Tier2 Grant (MOE2012-T2-2-086)
文摘The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Here, a facile bottom-up solution-synthesis with spark plasma sintering(SPS) process has been developed to build n-type Bi2Te3-xSex bulk nanocomposites, which substantially improves the power factor and decreases the lattice thermal conductivity by tuning the interface scattering of phonons and electrons. The stoichiometric composition in ternary Bi2Te3-xSex nanocomposites is also tuned to optimize the carrier concentration and lattice thermal conductivity. The optimized bulk nanocomposite Bi2Te2.7Se0.3 exhibits a ZT of 1.1 at^371 K, which is comparable to the corresponding commercially available ingots. Our results demonstrate the great potential of the solution-processed n-type Bi2Te3-xSex nanocomposites for cost-effective thermoelectric applications.
基金National Natural Science Foundation of China(52071218)National Key R&D Program of China(2021YFB1507403)+2 种基金Shenzhen University 2035 Pro-gram for Excellent Research( 00000218)China Postdoctoral Science Foundation(2022M722170)Y.Y.and M.W.acknowledge support from the German Research Founda tion(Deutsche Forchungsgemeinschaft,DFG)within project SFB917.Y.Y.acknowledges financial support under the Excellence Strategy of the Federal Govemment and the L ander within the ERS RWTH StartUp grant(Grant No.StUpPD_392-21).The authors also appre-ciate the Instrumental Analysis Center of Shenzhen University.
文摘In thermoelectrics,phase engineering serves a crucial function in deter-mining the power factor by affecting the band degeneracy.However,for low-symmetry compounds,the mainstream one-step phase manipulation strategy,depending solely on the valley or orbital degeneracy,is inadequate to attain a high density-of-states effective mass and exceptional zT.Here,we employ a distinctive two-step phase manipulation strategy through stepwise tailoring chemical bonds in GeSe.Initially,we amplify the valley degeneracy via CdTe alloying,which elevates the crystal symmetry from a covalently bonded orthorhombic to a metavalently bonded rhombohedral phase by significantly suppressing the Peierls distortion.Subsequently,we incorporate Pb to trigger the convergence of multivalence bands and further enhance the density-of-states effective mass by moderately restraining the Peierls distortion.Additionally,the atypical metavalent bonding in rhombohedral GeSe enables a high Ge vacancy concentration and a small band effective mass,leading to increased carrier concentration and mobility.This weak chemical bond along with strong lattice anharmonicity also reduces lattice thermal conductivity.Consequently,this unique property ensemble contributes to an outstanding zT of 0.9 at 773 K for Geo.8oPbo.2oSe(CdTe)o.25.This work underscores the pivotal role of the two-step phase manipulation by stepwise tailoring of chemical bonds in improving the thermoelectric performance of p-bonded chalcogenides.
基金Project supported by the National Natural Science Foundation of China(21805196)Guangxi Natural Science Foundation(2018GXNSFAA294051)the Guangxi Science and Technology Project(AD19110065)。
文摘The table-like magnetocaloric effect is significant for the magnetic refrigeration applications above 20 K based on the Ericsson cycle.Herein,we prepared a series of Nd_(6)Fe_(13)Pd_(1-x)Cu_(x)(x=0.05,0.1,0.15)compounds by the arc-melting method.These compounds show the single crystalline phase in the tetragonal Nd_(6)Fe_(13)Si-type structure with the space group I4/mcm.A magnetic phase transition from ferromagnetism to antiferromagnetism and a metamagnetic transition from the antiferromagnetic state to the ferromagnetic state are observed in each of the compounds.The compounds exhibit table-like magnetocaloric effects with large refrigerant capacities.A constantΔSM in a temperature span of 40 K in the Nd_(6)Fe_(13)Pd_(0.85)Cu_(0.15) compound are observed.For a field change of 0–5 T,the peak values of–ΔS_(M) for the Nd_(6)Fe_(13)Pd_(0.95)Cu_(0.05),Nd_(6)Fe_(13)Pd_(0.90)Cu_(0.10),and Nd_(6)Fe_(13)Pd_(0.85)Cu_(0.15) compounds are estimated to be 4.8,4.6 and 4.4 J/(kg·K)with corresponding refrigerant capacity values of 323,331 and 316 J/kg,respectively.The obtained table-like magnetocaloric effects with large refrigerant capacities as well as fairly small thermal and magnetic hysteresis deem these series of compounds good candidates for single-phase magnetic refrigeration based on the Ericsson cycle.