Poly(butylene adipate-co-terephthalate)(PBAT)is a promising biodegradable flexible polymer but suffers from slow crystallization rate,making it less attractive for some applications like the injection-molded products ...Poly(butylene adipate-co-terephthalate)(PBAT)is a promising biodegradable flexible polymer but suffers from slow crystallization rate,making it less attractive for some applications like the injection-molded products in comparison with low-density polyethylene(LDPE).This work aimed to accelerate the crystallization of PBAT by adding a self-assembly nucleating agent octamethylenedicarboxylic dibenzoylhydrazide(OMBH).PBAT/OMBH composites with various OMBH contents(0 wt%,0.5 wt%,0.7 wt%,1 wt%,2 wt%,3 wt%and 5 wt%)were prepared through melt-mixing.The effect of OMBH on the crystallization behavior,morphologies and mechanical properties of PBAT was investigated.The highest nucleation efficiency value of 59.6%was achieved for PBAT with 0.7 wt%OMBH,much higher than that of 22.7%for PBAT with 0.7 wt%talc.Atomic force microscopy results showed that OMBH formed fine fibers and induced the formation of transcrystalline layers of PBAT.Fourier transform infrared spectroscopy(FTIR)combined with two-dimensional correlation spectra suggested that the intermolecular dipole-dipole N—H…O=C interactions but not hydrogen bond between OMBH and PBAT promoted the crystallization of PBAT in the initial period of crystallization.The presence of OMBH did not change the crystal form of PBAT but had positive contribution in enhancing its crystallinity and mechanical properties.This work is essential for preparing PBAT with high crystallization rate,enhancing its potential applications in injection-molded products.展开更多
All-solid-state batteries(ASSBs) hold great promise for next-generation energy storage technologies owing to their advantage in different aspects such as energy density,safety,and wide temperature tolerance.However,th...All-solid-state batteries(ASSBs) hold great promise for next-generation energy storage technologies owing to their advantage in different aspects such as energy density,safety,and wide temperature tolerance.However,the use of solid-state electrolytes(SSEs) instead of liquid ones meanwhile brings serious concerns related to the point-to-point contact between SSEs and electrodes,which is known to result in high interface resistance and inhomogeneous distribution of charges during the Li^(+)plating/stripping process,eventually leading to a premature failure of ASSBs.This review focuses on the garnet-type SSEs in the formula of Li_(7)La_(3)Zr_(2)O_(12)(LLZO),and discusses the structure-performance relationship of this ceramic electrolyte in detail to achieve a clear understanding of its Li^(+)transmission mechanism.Meanwhile,the challenges of cubic phase LLZO(c-LLZO) for their application in solidstate batteries(SSBs) are demonstrated by the Li/LLZO interface,which features the importance of Li metal wettability and dendrite suppression for sustainable performance.Furthermore,this review summarizes the recent research strategies to combat these contact issues at the Li/LLZO interface,highlighting the essential role played by surface modification of LLZO electrolytes.Following the obtained insights,perspectives for future research on LLZO to accelerate its potential development of SSBs in commercialized applications are also provided.展开更多
Poly(lactic acid) (PLA) is a promising bio-based environmentally-friendly plastic. Nevertheless, the physical aging-induced brittleness of PLA limits its widespread applications. Blending with immiscible ductile polym...Poly(lactic acid) (PLA) is a promising bio-based environmentally-friendly plastic. Nevertheless, the physical aging-induced brittleness of PLA limits its widespread applications. Blending with immiscible ductile polymer is an effective way to toughen PLA. However, the underlying details of the toughening mechanism and, in particular, the effect of physical aging are not well understood. Herein, atomic force microscopy (AFM) based nanomechanical mapping technology was utilized to visualize the differences in the deformation mechanisms between unaged and aged PLA/poly(ε-caprolactone) (PCL) blend upon uniaxial drawing. Results show that physical aging has a significant effect on the microscopic Young’s modulus and its distribution of PLA matrix, resulting in a highly heterogeneous response of the PLA/PCL blend to external stress and affecting the mechanical properties of the PLA phase under different extensions. This work provides a new experimental basis for understanding the effect of physical aging on the mechanical properties of PLA-based materials.展开更多
The nucleation of crystals is often a determining step in the phase transition of materials,but it remains a challenge to control the density and specific location of nuclei simultaneously.Here we fabricated the isola...The nucleation of crystals is often a determining step in the phase transition of materials,but it remains a challenge to control the density and specific location of nuclei simultaneously.Here we fabricated the isolated single crystals of uniform size with controlled number density and spatial distribution by self-nucleation of patterned dendritic crystals.Imprint lithography creates the periodic void space on the surface of poly(ethylene oxide)-b-poly(2-vinyl pyridine)(PEO-b-P2VP)block copolymer thin films and provides spatial redistribution of polymers,leading to the preferential nucleation and subsequent oriented growth of dendrites in the periodic arrays of imprinted lines.The morphology and thermal stability of the patterned crystals can be adjusted by tuning embossing conditions(e.g.,temperature and pressure).Furthermore,in the self-nucleation technique,the annealing temperature and heating rate are used as the feedback parameters to map the number density and spatial distribution of regrown single crystals.Such PEO-b-P2VP crystalline pattern can be used as a versatile template for large-area manufacturing of selective metal patterns for electronic devices and other applications.展开更多
Although there has been rapid advancement in piezoelectric sensors,challenges still remain in developing wearable piezoelectric sensors by a one-step,continuous and environmentally friendly method.In this work,a 1D fl...Although there has been rapid advancement in piezoelectric sensors,challenges still remain in developing wearable piezoelectric sensors by a one-step,continuous and environmentally friendly method.In this work,a 1D flexible coaxial piezoelectric fiber was directly fabricated by melt extrusion molding,whose core and sheath layer are respectively slender steel wire(i.e.,electrode)and PVDF(i.e.,piezoelectric layer).Moreover,such 1D flexible coaxial piezoelectric fiber possesses short response time and high sensitivity,which can be used as a selfpowered sensor for bending and vibration sensing.More interestingly,such 1D flexible coaxial piezoelectric fiber(1D-PFs)can be further endowed with 3D helical structure.Moreover,a wearable and washable motion monitoring system can be constructed via braiding such 3D helical piezoelectric fiber(3D-PF)into commercial textiles.This work paves a new way for developing 1D and 3D piezoelectric fibers through a one-step,continuous and environmentally friendly method,showing potential applications in the field of sensing and wearable electronics.展开更多
Flexible strain sensor has promising features in successful application of health monitoring, electronic skins and smart robotics, etc.Here, we report an ultrasensitive strain sensor with a novel crack-wrinkle structu...Flexible strain sensor has promising features in successful application of health monitoring, electronic skins and smart robotics, etc.Here, we report an ultrasensitive strain sensor with a novel crack-wrinkle structure(CWS) based on graphite nanoplates(GNPs)/thermoplastic urethane(TPU)/polydimethylsiloxane(PDMS) nanocomposite. The CWS is constructed by pressing and dragging GNP layer on TPU substrate,followed by encapsulating with PDMS as a protective layer. On the basis of the area statistics, the ratio of the crack and wrinkle structures accounts for 31.8% and 9.5%, respectively. When the sensor is stretched, the cracks fracture, the wrinkles could reduce the unrecoverable destruction of cracks, resulting in an excellent recoverability and stability. Based on introduction of the designed CWS in the sensor, the hysteresis effect is limited effectively. The CWS sensor possesses a satisfactory sensitivity(GF=750 under 24% strain), an ultralow detectable limit(strain=0.1%) and a short respond time of 90 ms. For the sensing service behaviors, the CWS sensor exhibits an ultrahigh durability(high stability>2×10^(4) stretching-releasing cycles). The excellent practicality of CWS sensor is demonstrated through various human motion tests,including vigorous exercises of various joint bending, and subtle motions of phonation, facial movements and wrist pulse. The present CWS sensor shows great developing potential in the field of cost-effective, portable and high-performance electronic skins.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52073261 and U1704162).
文摘Poly(butylene adipate-co-terephthalate)(PBAT)is a promising biodegradable flexible polymer but suffers from slow crystallization rate,making it less attractive for some applications like the injection-molded products in comparison with low-density polyethylene(LDPE).This work aimed to accelerate the crystallization of PBAT by adding a self-assembly nucleating agent octamethylenedicarboxylic dibenzoylhydrazide(OMBH).PBAT/OMBH composites with various OMBH contents(0 wt%,0.5 wt%,0.7 wt%,1 wt%,2 wt%,3 wt%and 5 wt%)were prepared through melt-mixing.The effect of OMBH on the crystallization behavior,morphologies and mechanical properties of PBAT was investigated.The highest nucleation efficiency value of 59.6%was achieved for PBAT with 0.7 wt%OMBH,much higher than that of 22.7%for PBAT with 0.7 wt%talc.Atomic force microscopy results showed that OMBH formed fine fibers and induced the formation of transcrystalline layers of PBAT.Fourier transform infrared spectroscopy(FTIR)combined with two-dimensional correlation spectra suggested that the intermolecular dipole-dipole N—H…O=C interactions but not hydrogen bond between OMBH and PBAT promoted the crystallization of PBAT in the initial period of crystallization.The presence of OMBH did not change the crystal form of PBAT but had positive contribution in enhancing its crystallinity and mechanical properties.This work is essential for preparing PBAT with high crystallization rate,enhancing its potential applications in injection-molded products.
基金financially supported by the National Natural Science Foundation of China (Nos. 22025507 and 21931012)the Key Research Program of Frontier Sciences, CAS (No. ZDBS-LY-SLH020)Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202010)。
文摘All-solid-state batteries(ASSBs) hold great promise for next-generation energy storage technologies owing to their advantage in different aspects such as energy density,safety,and wide temperature tolerance.However,the use of solid-state electrolytes(SSEs) instead of liquid ones meanwhile brings serious concerns related to the point-to-point contact between SSEs and electrodes,which is known to result in high interface resistance and inhomogeneous distribution of charges during the Li^(+)plating/stripping process,eventually leading to a premature failure of ASSBs.This review focuses on the garnet-type SSEs in the formula of Li_(7)La_(3)Zr_(2)O_(12)(LLZO),and discusses the structure-performance relationship of this ceramic electrolyte in detail to achieve a clear understanding of its Li^(+)transmission mechanism.Meanwhile,the challenges of cubic phase LLZO(c-LLZO) for their application in solidstate batteries(SSBs) are demonstrated by the Li/LLZO interface,which features the importance of Li metal wettability and dendrite suppression for sustainable performance.Furthermore,this review summarizes the recent research strategies to combat these contact issues at the Li/LLZO interface,highlighting the essential role played by surface modification of LLZO electrolytes.Following the obtained insights,perspectives for future research on LLZO to accelerate its potential development of SSBs in commercialized applications are also provided.
基金the National Natural Science Foundation of China(No.52073261).
文摘Poly(lactic acid) (PLA) is a promising bio-based environmentally-friendly plastic. Nevertheless, the physical aging-induced brittleness of PLA limits its widespread applications. Blending with immiscible ductile polymer is an effective way to toughen PLA. However, the underlying details of the toughening mechanism and, in particular, the effect of physical aging are not well understood. Herein, atomic force microscopy (AFM) based nanomechanical mapping technology was utilized to visualize the differences in the deformation mechanisms between unaged and aged PLA/poly(ε-caprolactone) (PCL) blend upon uniaxial drawing. Results show that physical aging has a significant effect on the microscopic Young’s modulus and its distribution of PLA matrix, resulting in a highly heterogeneous response of the PLA/PCL blend to external stress and affecting the mechanical properties of the PLA phase under different extensions. This work provides a new experimental basis for understanding the effect of physical aging on the mechanical properties of PLA-based materials.
基金financially supported by the National Natural Science Foundation of China(Nos.51973202,51773182,U1804144,52003247 and 11872338)the China Postdoctoral Science Foundation(No.2020M682340)+2 种基金the Young Outstanding Teachers of University in Henan Province(No.2019GGJS003)the Postdoctoral Research Grant in Henan Province(No.201901009)the Startup Research Fund of Zhengzhou University(No.32211191).
文摘The nucleation of crystals is often a determining step in the phase transition of materials,but it remains a challenge to control the density and specific location of nuclei simultaneously.Here we fabricated the isolated single crystals of uniform size with controlled number density and spatial distribution by self-nucleation of patterned dendritic crystals.Imprint lithography creates the periodic void space on the surface of poly(ethylene oxide)-b-poly(2-vinyl pyridine)(PEO-b-P2VP)block copolymer thin films and provides spatial redistribution of polymers,leading to the preferential nucleation and subsequent oriented growth of dendrites in the periodic arrays of imprinted lines.The morphology and thermal stability of the patterned crystals can be adjusted by tuning embossing conditions(e.g.,temperature and pressure).Furthermore,in the self-nucleation technique,the annealing temperature and heating rate are used as the feedback parameters to map the number density and spatial distribution of regrown single crystals.Such PEO-b-P2VP crystalline pattern can be used as a versatile template for large-area manufacturing of selective metal patterns for electronic devices and other applications.
基金the National Natural Science Foundation of China(No.51873199)Program for Innovative Research Team(in Science and Technology)in University(No.20IRTSTHN002)。
文摘Although there has been rapid advancement in piezoelectric sensors,challenges still remain in developing wearable piezoelectric sensors by a one-step,continuous and environmentally friendly method.In this work,a 1D flexible coaxial piezoelectric fiber was directly fabricated by melt extrusion molding,whose core and sheath layer are respectively slender steel wire(i.e.,electrode)and PVDF(i.e.,piezoelectric layer).Moreover,such 1D flexible coaxial piezoelectric fiber possesses short response time and high sensitivity,which can be used as a selfpowered sensor for bending and vibration sensing.More interestingly,such 1D flexible coaxial piezoelectric fiber(1D-PFs)can be further endowed with 3D helical structure.Moreover,a wearable and washable motion monitoring system can be constructed via braiding such 3D helical piezoelectric fiber(3D-PF)into commercial textiles.This work paves a new way for developing 1D and 3D piezoelectric fibers through a one-step,continuous and environmentally friendly method,showing potential applications in the field of sensing and wearable electronics.
基金financially supported by the National Natural Science Foundation of China (Nos. 51773183 and U1804133)National Natural Science Foundation of China-Henan Province Joint Funds (No. U1604253)+1 种基金Henan Province University Innovation Talents Support Program (No. 20HASTIT001)Innovation Team of Colleges and Universities in Henan Province(No. 20IRTSTHN002)。
文摘Flexible strain sensor has promising features in successful application of health monitoring, electronic skins and smart robotics, etc.Here, we report an ultrasensitive strain sensor with a novel crack-wrinkle structure(CWS) based on graphite nanoplates(GNPs)/thermoplastic urethane(TPU)/polydimethylsiloxane(PDMS) nanocomposite. The CWS is constructed by pressing and dragging GNP layer on TPU substrate,followed by encapsulating with PDMS as a protective layer. On the basis of the area statistics, the ratio of the crack and wrinkle structures accounts for 31.8% and 9.5%, respectively. When the sensor is stretched, the cracks fracture, the wrinkles could reduce the unrecoverable destruction of cracks, resulting in an excellent recoverability and stability. Based on introduction of the designed CWS in the sensor, the hysteresis effect is limited effectively. The CWS sensor possesses a satisfactory sensitivity(GF=750 under 24% strain), an ultralow detectable limit(strain=0.1%) and a short respond time of 90 ms. For the sensing service behaviors, the CWS sensor exhibits an ultrahigh durability(high stability>2×10^(4) stretching-releasing cycles). The excellent practicality of CWS sensor is demonstrated through various human motion tests,including vigorous exercises of various joint bending, and subtle motions of phonation, facial movements and wrist pulse. The present CWS sensor shows great developing potential in the field of cost-effective, portable and high-performance electronic skins.