Deuteration of hydrogen-bonded phase transition crystals can increase the transition temperatures due to the isotope effect. But rare examples show the opposite trend that originates from the structural changes of the...Deuteration of hydrogen-bonded phase transition crystals can increase the transition temperatures due to the isotope effect. But rare examples show the opposite trend that originates from the structural changes of the hydrogen bond, known as the geometric H/D isotope effect. Herein, we report an organic crystal, diethylammonium hydrogen 1,4-terephthalate, exhibits a reversible structural phase transition and dielectric switching. Structural study shows the cations reside in channels formed by one-dimensional hydrogen-bonded anionic chains and undergo an order-disorder transition at around 206 K. The deuterated counterpart shows an elongation of the O…O hydrogen bond by about 0.005 A. This geometric isotope effect releases the internal pressure of the anionic host on the cation vips and results in a downward shift of the phase transition temperature by 10 K.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 21875035 and 21991144)。
文摘Deuteration of hydrogen-bonded phase transition crystals can increase the transition temperatures due to the isotope effect. But rare examples show the opposite trend that originates from the structural changes of the hydrogen bond, known as the geometric H/D isotope effect. Herein, we report an organic crystal, diethylammonium hydrogen 1,4-terephthalate, exhibits a reversible structural phase transition and dielectric switching. Structural study shows the cations reside in channels formed by one-dimensional hydrogen-bonded anionic chains and undergo an order-disorder transition at around 206 K. The deuterated counterpart shows an elongation of the O…O hydrogen bond by about 0.005 A. This geometric isotope effect releases the internal pressure of the anionic host on the cation vips and results in a downward shift of the phase transition temperature by 10 K.