期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
A Biomimetic Climbing Robot Based on the Gecko 被引量:18
1
作者 carlo menon Metin Sitti 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第3期115-125,共11页
The excellent climbing performance of the gecko is inspiring engineers and researchers for the design of artificial systems aimed at moving on vertical surfaces. Climbing robots could perform many useful tasks such as... The excellent climbing performance of the gecko is inspiring engineers and researchers for the design of artificial systems aimed at moving on vertical surfaces. Climbing robots could perform many useful tasks such as surveillance, inspection, repair, cleaning, and exploration. This paper presents and discusses the design, fabrication, and evaluation of two climbing robots which mimic the gait of the gecko. The first robot is designed considering macro-scale operations on Earth and in space. The second robot, whose motion is controlled using shape memory alloy actuators, is designed to be easily scaled down for micro-scale applications. Proposed bionic systems can climb up 65 degree slopes at a speed of 20 mm·s^-1. 展开更多
关键词 GECKO ROBOTICS biomimetics CLIMBING space memory alloy
在线阅读 下载PDF
Multi-Scale Compliant Foot Designs and Fabrication for Use with a Spider-Inspired Climbing Robot 被引量:10
2
作者 Dan Sameoto carlo menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第3期189-196,共8页
Climbing robots are of potential use for surveillance, inspection and exploration in different environments. In particular, the use of climbing robots for space exploration can allow scientists to explore environments... Climbing robots are of potential use for surveillance, inspection and exploration in different environments. In particular, the use of climbing robots for space exploration can allow scientists to explore environments too challenging for traditional wheeled designs. To adhere to surfaces, biomimetic dry adhesives based on gecko feet have been proposed. These biomimetic dry adhesives work by using multi-scale compliant mechanisms to make intimate contact with different surfaces and adhere by using Van der Waals forces. Fabrication of these adhesives has frequently been challenging however, due to the difficulty in combining macro, micro and nanoscale compliance. We present an all polymer foot design for use with a hexapod climbing robot and a fabrication method to improve reliability and yield. A high strength, low-modulus silicone, TC-5005, is used to form the foot base and microscale fibres in one piece by using a two part mold. A macroscale foot design is produced using a 3D printer to produce a base mold, while lithographic definition of microscale fibres in a thick photoresist forms the 'hairs' of the polymer foot. The adhesion of the silicone fibres by themselves or attached to the macro foot is examined to determine best strategies for placement and removal of feet to maximize adhesion. Results demonstrate the successful integration of micro and macro compliant feet for use in climbing on a variety of surfaces. 展开更多
关键词 biomimetics dry adhesive GECKO climbing robot MEMS SILICONE
在线阅读 下载PDF
DEM Numerical Simulation of Abrasive Wear Characteristics of a Bioinspired Ridged Surface 被引量:10
3
作者 Mohammad Almagzoub Mohammad carlo menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期175-181,共7页
This paper presents numerical investigations into a ridged surface whose design is inspired by the geometry of a Farrer’sscallop.The objective of the performed research is to assess if the proposed Bioinspired Ridged... This paper presents numerical investigations into a ridged surface whose design is inspired by the geometry of a Farrer’sscallop.The objective of the performed research is to assess if the proposed Bioinspired Ridged Surface (BRS) can potentiallyimprove wear resistance of soil-engaging components used in agricultural machinery and to validate numerical simulationsperformed using software based on the Discrete Element Method (DEM).The wear performance of the BRS is experimentallydetermined and also compared with a conventional flat surface.Different size of soil particles and relative velocities between theabrasive sand and the testing surfaces are used.Comparative results show that the numerical simulations are in agreement withthe experimental results and support the hypothesis that abrasive wear is greatly reduced by substituting a conventional flatsurface with the BRS. 展开更多
关键词 bioinspired ridged surface abrasive wear numerical simulation Discrete Element Method (DEM)
在线阅读 下载PDF
Biomimetics of Campaniform Sensilla:Measuring Strain from the Deformation of Holes 被引量:3
4
作者 Julian F. V. Vincent Sally E. Clift carlo menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第2期63-76,共14页
We present a bio-inspired strategy for designing embedded strain sensors in space structures. In insects, the campaniform sensillum is a hole extending through the cuticle arranged such that its shape changes in respo... We present a bio-inspired strategy for designing embedded strain sensors in space structures. In insects, the campaniform sensillum is a hole extending through the cuticle arranged such that its shape changes in response to loads. The shape change is rotated through 90° by the suspension of a bell-shaped cap whose deflection is detected by a cell beneath the cuticle. It can be sensitive to displacements of the order of 1 nm. The essential morphology, a hole formed in a plate of fibrous composite mate- rial, was modelled by Skordos et al. who showed that global deformation of the plate (which can be flat, curved or a tube) induces higher local deformation of the hole due to its locally higher compliance. Further developments reported here show that this approach can be applied to groups of holes relative to their orientation. , The morphology of the sensillum in insects suggests that greater sensitivity can be achieved by arranging several holes in a regular pattern; that if the hole is oval it can be "aimed" to sense specific strain directions; and that either by controlling the shape of the hole or its relationship with other holes it can have a tuned response to dynamic strains. We investigate space applications in which novel bio-inspired strain sensors could successfully be used. 展开更多
关键词 campaniform sensillum strain DISPLACEMENT COMPLIANCE HOLE remote sensing fibrous composite
在线阅读 下载PDF
Enhanced Compliant Adhesive Design and Fabrication with Dual-Level Hierarchical Structure 被引量:2
5
作者 Dan Sameoto carlo menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第3期228-234,共7页
Synthetic dry adhesives inspired by the nano-and micro-scale hairs found on the feet of geckos and some spiders have beendeveloped for almost a decade. Elastomeric single level micro-scale mushroom shaped fibres are c... Synthetic dry adhesives inspired by the nano-and micro-scale hairs found on the feet of geckos and some spiders have beendeveloped for almost a decade. Elastomeric single level micro-scale mushroom shaped fibres are currently able to function evenbetter than natural dry adhesives on smooth surfaces under normal loading. However, the adhesion of these single level syntheticdry adhesives on rough surfaces is still not optimal because of the reduced contact surface area. In nature, contact area ismaximized by hierarchically structuring different scales of fibres capable of conforming surface roughness. In this paper, weadapt the nature’s solution arid propose a novel dual-level hierarchical adhesive design using Polydimethylsiloxane (PDMS),which is tested under peel loading at different orientations. A negative macro-scale mold is manufactured by using a laser cutterto define holes in a Poly(methyl methacrylate) (PMMA) plate. After casting PDMS macro-scale fibres by using the obtainedPMMA mold, a previously prepared micro-fibre adhesive is bonded to the macro-scale fibre substrate. Once the bondingpolymer is cured, the micro-fibre adhesive is cut to form macro scale mushroom caps. Each macro-fibre of the resulting hierarchicaladhesive is able to conform to loads applied in different directions. The dual-level structure enhances the peel strengthon smooth surfaces compared to a single-level dry adhesive, but also weakens the shear strength of the adhesive for a given areain contact. The adhesive appears to be very performance sensitive to the specific size of the fibre tips, and experiments indicatethat designing hierarchical structures is not as simple as placing multiple scales of fibres on top of one another, but can requiresignificant design optimization to enhance the contact mechanics and adhesion strength. 展开更多
关键词 biomimetics dry adhesive HIERARCHICAL dual-level adhesive SILICONE polymer
在线阅读 下载PDF
Effect of Orientation of Fibers and Holes on the Radial Strain Amplification of Campaniform sensilla
6
作者 Nickolas L.M.Mani carlo menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第4期314-320,共7页
In this paper,a structural analysis is performed to gain insights on the synergistic mechanical amplification effect thatCampaniform sensilla have when combined in an array configuration.In order to simplify the analy... In this paper,a structural analysis is performed to gain insights on the synergistic mechanical amplification effect thatCampaniform sensilla have when combined in an array configuration.In order to simplify the analysis performed in this preliminaryinvestigation,an array of four holes in a single orthotropic lamina is considered.Firstly,a Finite Element Method(FEM) analysis is performed to discretely assess the influence that different geometrical parameters have on the mechanicalamplification properties of the array.Secondly,an artificial neural network is used to obtain an approximated multi-dimensionalcontinuous function,which models the relationship between the geometrical parameters and the amplification properties of thearray.Thirdly,an optimization is performed to identify the geometrical parameters yielding the maximum mechanical amplification.Finally,results are validated with an additional FEM simulation performed by varying geometrical parameters in theneighborhood of the identified optimal parameters.The method proposed in this paper can be fully automated and used to solvea wide range of optimization problems aimed at identifying optimal configurations of strain sensors inspired by Campaniformsensilla. 展开更多
关键词 Campaniform sensillum strain sensor FEM ANN optimization
在线阅读 下载PDF
Analysis and Design of Thermally Actuated Micro-Cantilevers for High Frequency Vibrations Using Finite Element Method
7
作者 Mojtaba Komeili carlo menon 《World Journal of Mechanics》 2016年第3期94-107,共14页
Vibrational behavior of thermally actuated cantilever micro-beams and their mechanical response at moderately high frequency under a non-harmonic periodic loading is studied in this paper. Two different configurations... Vibrational behavior of thermally actuated cantilever micro-beams and their mechanical response at moderately high frequency under a non-harmonic periodic loading is studied in this paper. Two different configurations are considered: 1) a straight beam with two actuation layers on top and bottom which utilizes the bimorph effect to induce bending;2) a uniform beam with base excitation, where the beam is mounted on an actuator which moves it periodically at its base perpendicular to its axis. Generally, vibrating micro-cantilevers are required to oscillate at a specified frequency. In order to increase the efficiency of the system, and achieve deflections with low power consumption, geometrical features of the beams can be quantified so that the required vibrating frequency matches the natural frequencies of the beam. A parametric modal analysis is conducted on two configurations of micro-cantilever and the first natural frequency of the cantilevers as a function of geometrical parameters is extracted. To evaluate vibrational behavior and thermo-mechanical efficiency of micro-cantilevers as a function of their geometrical parameters and input power, a case study with a specified vibrating frequency is considered. Due to significant complexities in the loading conditions and thermo-mechanical behavior, this task can only be tackled via numerical methods. Selecting the geometrical parameters in order to induce resonance at the nominal frequency, non-linear time-history (transient) thermo-mechanical finite element analysis (using ANSYS) is run on each configuration to study its response to the periodic heating input. Approaches to improve the effectiveness of actuators in each configuration based on their implementation are investigated. 展开更多
关键词 Micro-Electro-Mechanical Systems Finite Element Thermal Actuations MICRO-CANTILEVER Dynamic Thermo-Mechanical Analysis
在线阅读 下载PDF
Bioinspired Dry Adhesive Materials and Their Application in Robotics: A Review 被引量:12
8
作者 Yasong Li Jeffrey Krahn carlo menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第2期181-199,共19页
Dry adhesives inspired from climbing animals, such as geckos and spiders, rely on van der Waals forces to attach to the opposing surface. Biological fibrillar dry adhesives have a hierarchical structure closely resemb... Dry adhesives inspired from climbing animals, such as geckos and spiders, rely on van der Waals forces to attach to the opposing surface. Biological fibrillar dry adhesives have a hierarchical structure closely resembling a tree: the surface of the skin on the animal's feet is covered in arrays of slender micro-fibrils, each of which supports arrays of fibrils in submicron dimensions. These nano-meter size fibrils can conform closely to the opposing surfaces to induce van der Waals interaction. Bioinspired dry adhesives have been developed in research laboratories for more than a decade. To mimic the biological fibrillar adhesives, fibrillar structures have been prepared using a variety of materials and geometrical arrangements. In this review article, the mechanism and selected fabrication methods of fibrillar adhesives are summarized for future reference in adhesive development. Robotic applications of these bioinspired adhesives are also introduced in this article. Various successful appli- cations of bioinspired fibrillar adhesives can shed light on developing smart adhesives for use in automation. 展开更多
关键词 bioinspired gecko adhesive van der Waals forces BIOMIMETIC climbing robot bioinspired tape
原文传递
Abigaille-Ⅲ: A Versatile, Bioinspired Hexapod for Scaling Smooth Vertical Surfaces 被引量:14
9
作者 Michael Henrey Ausama Ahmed +2 位作者 Paolo Boscariol Lesley Shannon carlo menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2014年第1期1-17,共17页
This paper presents a novel, legged robot, Abigaille-Ⅲ, which is a hexapod actuated by 24 miniature gear motors. This robot uses dual-layer dry adhesives to climb smooth, vertical surfaces. Because dry adhesives are ... This paper presents a novel, legged robot, Abigaille-Ⅲ, which is a hexapod actuated by 24 miniature gear motors. This robot uses dual-layer dry adhesives to climb smooth, vertical surfaces. Because dry adhesives are passive and stick to various surfaces, they have advantages over mechanisms such as suction, claws and magnets. The mechanical design and posture of Abigaille-Ⅲ were optimized to reduce pitchback forces during vertical climbing. The robot's electronics were designed around a Field Programmable Gate Array, producing a versatile computing architecture. The robot was reconfigured for vertical climbing with both 5 and 6 legs, and with 3 or 4 motors per leg, without changes to the electronic hardware. Abigaille-Ⅲ demonstrated dexterity through vertical climbing on uneven surfaces, and by transferring between horizontal and vertical sur- faces. In endurance tests, Abigaille-Ⅲ completed nearly 4 hours of continuous climbing and over 7 hours of loitering, showing that dry adhesive climbing systems can be used for extended missions. 展开更多
关键词 biologically-inspired robots climbing robots dry adhesive legged robots
原文传递
Performance of Forearm FMG and sEMG for Estimating Elbow, Forearm and Wrist Positions 被引量:3
10
作者 Zhen Gang Xiao carlo menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第2期284-295,共12页
The ability to track upper extremity movement during activity of daily living has the potential to facilitate the recovery of individuals with neurological or physical injuries. Hence, the use of Surface Electromyogra... The ability to track upper extremity movement during activity of daily living has the potential to facilitate the recovery of individuals with neurological or physical injuries. Hence, the use of Surface Electromyography (sEMG) signals to predict upper extremity movement is an area of interest in the research community. A less established technique, Force Myography (FMG), which uses force sensors to detect forearm muscle contraction patterns, is also able to detect some movements of the arm. This paper investigates the comparative performance of sEMG and FMG when predicting wrist, forearm and elbow positions using signals extracted from the forearm only. Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) classifiers were used to evaluate the prediction performance of both FMG and sEMG data. Ten healthy volunteers participated in this study. Under a cross validation across a repetition evaluation scheme, the SVM classifier obtained averaged accuracies of 84.3%, 82.4% and 71.0%, respectively, for predicting elbow, forearm and wrist positions using FMG; while sEMG yielded 75.4%, 83.4% and 92.4% accuracies for predicting the same respective positions. The accuracies obtained using SVM are slightly, but statistical significantly, higher than the ones obtained using LDA. However, the trends on the classification performances between FMG and sEMG are consistent. These results also indicate that the forearm FMG pattern is highly influenced by the change of elbow position, while the forearm sEMG is less subjected to the change. Overall, both forearm FMG and sEMG techniques provide abundant information that can be utilized for tracking the upper extremity movements. 展开更多
关键词 Surface Electromyography (sEMG) Force Myography (FMG) classification limb movement activity monitoring upper extremity
原文传递
A Case Study of a Force-myography Controlled Bionic Hand Mitigating Limb Position Effect 被引量:1
11
作者 Diego Ferigo Lukas-Karim Merhi +2 位作者 Brittany Pousett Zhen Gang Xiao carlo menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第4期692-705,共14页
Force Myography (FMG), which monitors pressure or radial deformation of a limb, has recently been proposed as a po- tential alternative for naturally controlling bionic robotic prostheses. This paper presents an exp... Force Myography (FMG), which monitors pressure or radial deformation of a limb, has recently been proposed as a po- tential alternative for naturally controlling bionic robotic prostheses. This paper presents an exploratory case study aimed at evaluating how FMG behaves when a person with amputation uses a hand prosthetic prototype. One volunteer (transradial amputation) participated in this study, which investigated two experimental cases: static and dynamic. The static case considered forearm muscle contractions in a fixed elbow and shoulder positions whereas the dynamic case included movements of the elbow and shoulder. When considering eleven different hand grips, static data showed an accuracy over 99%, and dynamic data over 86% (within-trial analysis). The across-trial analysis, that takes into account multiple trials in the same data collection set, showed a meaningful accuracy respectively of 81% and 75% only for the reduced six grips setup. While further research is needed to increase these accuracies, the obtained results provided initial evidence that this technology could represent an in- teresting alternative that is worth exploring for controlling prosthesis. 展开更多
关键词 Force Myography (FMG) Human Machine Interface (HMI) transradial amputee limb position effect regression bionic hand
原文传递
Plasma functionalized MoSe2 for efficient nonenzymatic sensing of hydrogen peroxide in ultra-wide pH range
12
作者 Yang Luo Donghai Wu +6 位作者 Zehui Li Xiao‐Yan Li Yinghong Wu Shien‐Ping Feng carlo menon Houyang Chen Paul K.Chu 《SmartMat》 2022年第3期491-502,共12页
Enzymatic sensors have inherent problems such as the low stability and limited pH range in industrial and biomedical applications and therefore,more efficient nonenzymatic sensors are highly desirable.Herein,plasmafun... Enzymatic sensors have inherent problems such as the low stability and limited pH range in industrial and biomedical applications and therefore,more efficient nonenzymatic sensors are highly desirable.Herein,plasmafunctionalized defective MoSe_(2)is prepared and studied as a highly efficient catalyst for electrochemical sensing of H_(2)O_(2).Experiments and theoretical computations show that the plasma-induced Se multi-vacancies and nitrogen dopants generate new active sites,expose more edge active surfaces,narrow the bandgap,and strengthen binding with the·OH intermediate,which imparts new fundamental knowledge about the roles of defects in catalysis.The defective MoSe_(2)-catalyzed sensor delivers competitive performance in hydrogen peroxide detection such as a low detection limit of 12.6 nmol/L,wide operational pH range of 1−13,good long-term stability,and high selectivity.The portable sensor produced by screen printing confirms the excellent commercial potential and in addition,the results not only reveal a novel concept to design and fabricate high-performance sensors for H_(2)_(O2)but also provide insights into the effectiveness of surface modification of diverse catalytic materials. 展开更多
关键词 MoSe_(2) plasma functionalization electrochemical sensors hydrogen peroxides portable devices
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部