Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.Ho...Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.However,complex operating conditions,coupling cell-to-cell inconsistency,and limited labeled data pose great challenges to accurate and robust battery pack capacity estimation.To address these issues,this paper proposes a hierarchical data-driven framework aimed at enhancing the training of machine learning models with fewer labeled data.Unlike traditional data-driven methods that lack interpretability,the hierarchical data-driven framework unveils the“mechanism”of the black box inside the data-driven framework by splitting the final estimation target into cell-level and pack-level intermediate targets.A generalized feature matrix is devised without requiring all cell voltages,significantly reducing the computational cost and memory resources.The generated intermediate target labels and the corresponding features are hierarchically employed to enhance the training of two machine learning models,effectively alleviating the difficulty of learning the relationship from all features due to fewer labeled data and addressing the dilemma of requiring extensive labeled data for accurate estimation.Using only 10%of degradation data,the proposed framework outperforms the state-of-the-art battery pack capacity estimation methods,achieving mean absolute percentage errors of 0.608%,0.601%,and 1.128%for three battery packs whose degradation load profiles represent real-world operating conditions.Its high accuracy,adaptability,and robustness indicate the potential in different application scenarios,which is promising for reducing laborious and expensive aging experiments at the pack level and facilitating the development of battery technology.展开更多
The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coup...The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coupling behaviors requires interdisciplinary efforts.Here,we design experiments under mechanical constraints and introduce an in-situ analytical framework to clarify the complex interaction mechanisms and coupling degrees among multi-physics fields.The proposed analytical framework integrates the parameterization of equivalent models,in-situ mechanical analysis,and quantitative assessment of coupling behavior.The results indicate that the significant impact of pressure on impedance at low temperatures results from the diffusion-controlled step,enhancing kinetics when external pressure,like 180 to 240 k Pa at 10℃,is applied.The diversity in control steps for the electrochemical reaction accounts for the varying impact of pressure on battery performance across different temperatures.The thermal expansion rate suggests that the swelling force varies by less than 1.60%per unit of elevated temperature during the lithiation process.By introducing a composite metric,we quantify the coupling correlation and intensity between characteristic parameters and physical fields,uncovering the highest coupling degree in electrochemical-thermal fields.These results underscore the potential of analytical approaches in revealing the mechanisms of interaction among multi-fields,with the goal of enhancing battery performance and advancing battery management.展开更多
Battery fault diagnosis is essential for ensuring the reliability and safety of electric vehicles(EVs).The existing battery fault diagnosis methods are difficult to detect faults at an early stage based on the real-wo...Battery fault diagnosis is essential for ensuring the reliability and safety of electric vehicles(EVs).The existing battery fault diagnosis methods are difficult to detect faults at an early stage based on the real-world vehicle data since lithium-ion battery systems are usually accompanied by inconsistencies,which are difficult to distinguish from faults.A fault diagnosis method based on signal decomposition and two-dimensional feature clustering is introduced in this paper.Symplectic geometry mode decomposition(SGMD)is introduced to obtain the components characterizing battery states,and distance-based similarity measures with the normalized extended average voltage and dynamic time warping distances are established to evaluate the state of batteries.The 2-dimensional feature clustering based on DBSCAN is developed to reduce the number of feature thresholds and differentiate flaw cells from the battery pack with only one parameter under a wide range of values.The proposed method can achieve fault diagnosis and voltage anomaly identification as early as 43 days ahead of the thermal runaway.And the results of four electric vehicles and the comparison with other traditional methods validated the proposed method with strong robustness,high reliability,and long time scale warning,and the method is easy to implement online.展开更多
This paper analyzes the system-level state of health(SOH)and its dependence on the SOHs of its component battery modules.Due to stochastic natures of battery aging processes and their dependence on charge/discharge ra...This paper analyzes the system-level state of health(SOH)and its dependence on the SOHs of its component battery modules.Due to stochastic natures of battery aging processes and their dependence on charge/discharge rate and depth,operating temperature,and environment conditions,capacities of battery modules decay unevenly and randomly.Based on estimated SOHs of battery modules during battery operation,we analyze how the SOH of the entire system deteriorates when battery modules age and become increasingly diverse in their capacities.A rigorous mathematical analysis of system-level capacity utilization is conducted.It is shown that for large battery strings with uniformly distributed capacities,the average string capacity approaches the minimum,implying an asymptotically near worst-case capacity utility without reorganization.It is demonstrated that the overall battery usable capacities can be more efficiently utilized to achieve extended operational ranges by using battery reconfiguration.An optimal regrouping algorithm is introduced.Analysis methods,simulation examples,and a case study using real-world battery data are presented.展开更多
基金supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China[Grant No.52222708]the Natural Science Foundation of Beijing Municipality[Grant No.3212033]。
文摘Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.However,complex operating conditions,coupling cell-to-cell inconsistency,and limited labeled data pose great challenges to accurate and robust battery pack capacity estimation.To address these issues,this paper proposes a hierarchical data-driven framework aimed at enhancing the training of machine learning models with fewer labeled data.Unlike traditional data-driven methods that lack interpretability,the hierarchical data-driven framework unveils the“mechanism”of the black box inside the data-driven framework by splitting the final estimation target into cell-level and pack-level intermediate targets.A generalized feature matrix is devised without requiring all cell voltages,significantly reducing the computational cost and memory resources.The generated intermediate target labels and the corresponding features are hierarchically employed to enhance the training of two machine learning models,effectively alleviating the difficulty of learning the relationship from all features due to fewer labeled data and addressing the dilemma of requiring extensive labeled data for accurate estimation.Using only 10%of degradation data,the proposed framework outperforms the state-of-the-art battery pack capacity estimation methods,achieving mean absolute percentage errors of 0.608%,0.601%,and 1.128%for three battery packs whose degradation load profiles represent real-world operating conditions.Its high accuracy,adaptability,and robustness indicate the potential in different application scenarios,which is promising for reducing laborious and expensive aging experiments at the pack level and facilitating the development of battery technology.
基金supported by the National Science Fund for Excellent Youth Scholars of China(52222708)the National Natural Science Foundation of China(51977007)。
文摘The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coupling behaviors requires interdisciplinary efforts.Here,we design experiments under mechanical constraints and introduce an in-situ analytical framework to clarify the complex interaction mechanisms and coupling degrees among multi-physics fields.The proposed analytical framework integrates the parameterization of equivalent models,in-situ mechanical analysis,and quantitative assessment of coupling behavior.The results indicate that the significant impact of pressure on impedance at low temperatures results from the diffusion-controlled step,enhancing kinetics when external pressure,like 180 to 240 k Pa at 10℃,is applied.The diversity in control steps for the electrochemical reaction accounts for the varying impact of pressure on battery performance across different temperatures.The thermal expansion rate suggests that the swelling force varies by less than 1.60%per unit of elevated temperature during the lithiation process.By introducing a composite metric,we quantify the coupling correlation and intensity between characteristic parameters and physical fields,uncovering the highest coupling degree in electrochemical-thermal fields.These results underscore the potential of analytical approaches in revealing the mechanisms of interaction among multi-fields,with the goal of enhancing battery performance and advancing battery management.
基金the National Natural Science Foundation of China[No.51977007,No.52007006]the Natural Science Foundation of Beijing under grant 3212033.
文摘Battery fault diagnosis is essential for ensuring the reliability and safety of electric vehicles(EVs).The existing battery fault diagnosis methods are difficult to detect faults at an early stage based on the real-world vehicle data since lithium-ion battery systems are usually accompanied by inconsistencies,which are difficult to distinguish from faults.A fault diagnosis method based on signal decomposition and two-dimensional feature clustering is introduced in this paper.Symplectic geometry mode decomposition(SGMD)is introduced to obtain the components characterizing battery states,and distance-based similarity measures with the normalized extended average voltage and dynamic time warping distances are established to evaluate the state of batteries.The 2-dimensional feature clustering based on DBSCAN is developed to reduce the number of feature thresholds and differentiate flaw cells from the battery pack with only one parameter under a wide range of values.The proposed method can achieve fault diagnosis and voltage anomaly identification as early as 43 days ahead of the thermal runaway.And the results of four electric vehicles and the comparison with other traditional methods validated the proposed method with strong robustness,high reliability,and long time scale warning,and the method is easy to implement online.
基金supported in part by the Army Research Office(W911NF-19-1-0176).
文摘This paper analyzes the system-level state of health(SOH)and its dependence on the SOHs of its component battery modules.Due to stochastic natures of battery aging processes and their dependence on charge/discharge rate and depth,operating temperature,and environment conditions,capacities of battery modules decay unevenly and randomly.Based on estimated SOHs of battery modules during battery operation,we analyze how the SOH of the entire system deteriorates when battery modules age and become increasingly diverse in their capacities.A rigorous mathematical analysis of system-level capacity utilization is conducted.It is shown that for large battery strings with uniformly distributed capacities,the average string capacity approaches the minimum,implying an asymptotically near worst-case capacity utility without reorganization.It is demonstrated that the overall battery usable capacities can be more efficiently utilized to achieve extended operational ranges by using battery reconfiguration.An optimal regrouping algorithm is introduced.Analysis methods,simulation examples,and a case study using real-world battery data are presented.