陆表切割密度(Land Dissection Density,LDD)的空间格局与陆地表面土壤侵蚀息息相关,国内相关研究主要基于流域或局地尺度分析黄土高原和东北地区的陆表切割情况,全国尺度上陆表切割情况仍未知。该文基于ALOS World 3D-30 m DEM数据和...陆表切割密度(Land Dissection Density,LDD)的空间格局与陆地表面土壤侵蚀息息相关,国内相关研究主要基于流域或局地尺度分析黄土高原和东北地区的陆表切割情况,全国尺度上陆表切割情况仍未知。该文基于ALOS World 3D-30 m DEM数据和全国二级流域数据,利用Geomorphons地形元素分类方法制成全国陆表切割密度分布图,并结合地貌区划分析各地貌区内不同等级切割密度的分布情况。结果显示:全国二级流域的陆表切割密度介于0~7 km/km^(2)之间,强烈切割(3~<5 km/km^(2))流域面积约占国土面积的0.54%;切割密度与流域地形因素密切相关,缓斜坡(2°<~5°)、高丘陵和小起伏山地(100~400 m)以及低海拔(<1000 m)地区是切割易发区;一级地貌大区间的切割密度空间格局差异显著,中度及以上切割(LDD≥2 km/km^(2))流域空间分布呈现出不同模式,体现了地貌区内外营力的共同作用;陆表切割易发生在受剥蚀外营力作用影响的二级地貌区,且不同等级切割密度在不同地貌类型上具有一定聚集性。研究结果可拓展现有陆表切割研究的空间尺度,为宏观层面的陆表切割现状和全国各地土壤侵蚀评估提供科学依据。展开更多
Land dissection density(LDD)provides morphological evidence regarding prior intense soil erosion and quantifies the distribution of land dissections.A comprehensive understanding of the potential factors influencing t...Land dissection density(LDD)provides morphological evidence regarding prior intense soil erosion and quantifies the distribution of land dissections.A comprehensive understanding of the potential factors influencing the spatial pattern and value of the LDD is vital in geological disasters,soil erosion,and other related domains.Land dissection phenomena in China affects large areas with different morphological,pedological,and climatic characteristics.Prior studies have focused on the potential factors influencing the LDD at a watershed scale.However,these results are insufficient to reflect the status quo of dissection development and its primary influencing factors on a national scale.LDD’s spatial patterns and the dominant factors at a regional scale in millions of square kilometers remain to be ascertained.This study used the geomorphon-based method and the geographical detector model to quantify the spatial pattern of LDD over China and identify the dominant factors affecting this pattern in China’s six first-order geomorphological regions(GR1~GR6).The results yield the following findings:(1)LDD in China ranges from 0~4.55 km/km^(2),which is larger in central and eastern regions than in other regions of China;(2)dominant factors and their dominant risk subcategories vary with each geomorphological region’s primary internal and external forces;(3)the influence of natural factors is more significant on the large regional scale in millions of square kilometers compared to anthropogenic factors;relief degree of land surface(RDLS)is dominant in GR1,GR2,and GR5;the slope is dominant in GR6,soil type is dominant in GR3 and GR4,and lithology plays a critical role in the dominant interactions of GR3,GR4,and GR6;(4)the interactions between factors on LDD’s spatial pattern have a more significant effect than individual factors.展开更多
The Yushu Ms 7.1 earthquake occurred on April 14,2010 in Qinghai Province,China.It induced a mass of secondary geological disasters,such as collapses,landslides,and debris flows.Risk assessment maps are important for ...The Yushu Ms 7.1 earthquake occurred on April 14,2010 in Qinghai Province,China.It induced a mass of secondary geological disasters,such as collapses,landslides,and debris flows.Risk assessment maps are important for geological disaster prevention and mitigation,and also can serve as a guide for post-earthquake reconstruction.Firstly,a hazard assessment index system of secondary geological disasters in the earthquake region was built in this paper,which was based on detailed analysis of environmental and triggering factors closely related to geological disasters in the study area.GIS technology was utilized to extract and analyze the assessment index.Hazard assessment maps of secondary geological disasters were obtained by spatial modeling and overlaying analysis.Secondly,an analysis of the vulnerability of hazard bearing bodies in the area was conducted,important information,such as, population density,percentage of arable land, industrial and agricultural outputs per unit area were regarded as assessment indices to evaluate socioeconomic vulnerability.Thirdly,the risk level of secondary geological disasters of the area was obtained by the formula:Risk=Hazard×Vulnerability. Risk assessment maps were categorized into four levels,including"low","moderate","high"and"very high".These results show that some urban areas are at very high risk,including Jiegu,Chengwen,Xiaxiula and Sahuteng towns.This research can provide some references and suggestions to improve decisionmaking support for emergency relief and post- earthquake reconstruction in the study area.展开更多
Inland lakes and alpine glaciers are important constituents of water resources in arid and semiarid regions. Understanding their variations is critical for both an accurate evaluation of the dynamic changes of water r...Inland lakes and alpine glaciers are important constituents of water resources in arid and semiarid regions. Understanding their variations is critical for both an accurate evaluation of the dynamic changes of water resources and the retrieval of climatic information. On the basis of earlier researches, this study investigated the growth of the Sayram Lake and the retreat of its water-supplying glaciers in the Tianshan Mountains using long-term sequenced remote sensing images. Our results show that over the past 40 years, the surface area and the water level of the lake has increased by 12.0±0.3 km<sup>2</sup> and 2.8 m, respectively, and the area of its water-supplying glaciers has decreased continuously since the early 1970s with a total reduction of about–2.13±0.03 km<sup>2</sup>. Our study has indicative significance to the research of regional climate change.展开更多
Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited ...Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited precipitation, and where human activities have greatly transformed natural desert system by clearing natural vegetation, expanding oases and even building dams on inland rivers. However, the current studies on land use patterns are still characterized by field investigations and case studies, with almost no solid scientific basis. This paper holds that land types and their combination patterns are the principal basis for designing sustainable land use patterns, and that GIS and RS-based large-scale land type mapping and the study of their spatial combination structures should be coordinated with the demand of social development. The existing environmental problems induced by irrational land use mostly result from their deviation from the natural properties of land types. Taking the northern slope of the Tianshan Mountains (NSTM) as an example and considering land type patterns as the basis of land use patterns, this paper improves the vertical oa- sis-and-mid-mountain two-belts development model and the sustainable mountain land use model for arid lands put forward in recent years; and in terms of oases patterns, it outlines oasis development models, including intensive land use pattern in alluvial-diluvial fans, moderate agricultural development pattern in alluvial plains, and ecological land use pattern in river-end oases.展开更多
This study simulated and predicted the runoff of the Aksu River Basin, a typical river basin supplied by snowmelt in an arid mountain region, with a limited data set and few hydrological and meteorological stations. T...This study simulated and predicted the runoff of the Aksu River Basin, a typical river basin supplied by snowmelt in an arid mountain region, with a limited data set and few hydrological and meteorological stations. Two hydrological models, the snowmelt-runoff model (SRM) and the Danish NedbФr-AfstrФmnings rainfall-runoff model (NAM), were used to simulate daily discharge processes in the Aksu River Basin. This study used the snow-covered area from MODIS remote sensing data as the SRM input. With the help of ArcGIS software, this study successfully derived the digital drainage network and elevation zones of the basin from digital elevation data. The simulation results showed that the SRM based on MODIS data was more accurate than NAM. This demonstrates that the application of remote sensing data to hydrological snowmelt models is a feasible and effective approach to runoff simulation and prediction in arid unguaged basins where snowmelt is a major runoff factor.展开更多
基金supported by the Natural Science Foundation of China(Grants No.42167038,42161005)the Guangxi Scientific Project(Grants No.AD19110140)the Guangxi Scholarship Fund of the Guangxi Education Department and Guangxi Education Department project(Grants No.2022KY1168).
文摘Land dissection density(LDD)provides morphological evidence regarding prior intense soil erosion and quantifies the distribution of land dissections.A comprehensive understanding of the potential factors influencing the spatial pattern and value of the LDD is vital in geological disasters,soil erosion,and other related domains.Land dissection phenomena in China affects large areas with different morphological,pedological,and climatic characteristics.Prior studies have focused on the potential factors influencing the LDD at a watershed scale.However,these results are insufficient to reflect the status quo of dissection development and its primary influencing factors on a national scale.LDD’s spatial patterns and the dominant factors at a regional scale in millions of square kilometers remain to be ascertained.This study used the geomorphon-based method and the geographical detector model to quantify the spatial pattern of LDD over China and identify the dominant factors affecting this pattern in China’s six first-order geomorphological regions(GR1~GR6).The results yield the following findings:(1)LDD in China ranges from 0~4.55 km/km^(2),which is larger in central and eastern regions than in other regions of China;(2)dominant factors and their dominant risk subcategories vary with each geomorphological region’s primary internal and external forces;(3)the influence of natural factors is more significant on the large regional scale in millions of square kilometers compared to anthropogenic factors;relief degree of land surface(RDLS)is dominant in GR1,GR2,and GR5;the slope is dominant in GR6,soil type is dominant in GR3 and GR4,and lithology plays a critical role in the dominant interactions of GR3,GR4,and GR6;(4)the interactions between factors on LDD’s spatial pattern have a more significant effect than individual factors.
基金supported by the National Natural Science Foundation of China(Grant No,41171332)the National Science & Technology Pillar Program of China(Grant No.2008BAK50B01-5,2008BAK50B01-6 and O8H80210AR)
文摘The Yushu Ms 7.1 earthquake occurred on April 14,2010 in Qinghai Province,China.It induced a mass of secondary geological disasters,such as collapses,landslides,and debris flows.Risk assessment maps are important for geological disaster prevention and mitigation,and also can serve as a guide for post-earthquake reconstruction.Firstly,a hazard assessment index system of secondary geological disasters in the earthquake region was built in this paper,which was based on detailed analysis of environmental and triggering factors closely related to geological disasters in the study area.GIS technology was utilized to extract and analyze the assessment index.Hazard assessment maps of secondary geological disasters were obtained by spatial modeling and overlaying analysis.Secondly,an analysis of the vulnerability of hazard bearing bodies in the area was conducted,important information,such as, population density,percentage of arable land, industrial and agricultural outputs per unit area were regarded as assessment indices to evaluate socioeconomic vulnerability.Thirdly,the risk level of secondary geological disasters of the area was obtained by the formula:Risk=Hazard×Vulnerability. Risk assessment maps were categorized into four levels,including"low","moderate","high"and"very high".These results show that some urban areas are at very high risk,including Jiegu,Chengwen,Xiaxiula and Sahuteng towns.This research can provide some references and suggestions to improve decisionmaking support for emergency relief and post- earthquake reconstruction in the study area.
基金financially supported by the National Basic Research Program of China(2015CB954101)the National Science and Technology Basic Special Project(2011FY11040-2)+1 种基金the National Natural Science Foundation of China(41171332,41571388)the Surveying and Mapping Geoinformation Nonprofit Specific Project(201512033)
文摘Inland lakes and alpine glaciers are important constituents of water resources in arid and semiarid regions. Understanding their variations is critical for both an accurate evaluation of the dynamic changes of water resources and the retrieval of climatic information. On the basis of earlier researches, this study investigated the growth of the Sayram Lake and the retreat of its water-supplying glaciers in the Tianshan Mountains using long-term sequenced remote sensing images. Our results show that over the past 40 years, the surface area and the water level of the lake has increased by 12.0±0.3 km<sup>2</sup> and 2.8 m, respectively, and the area of its water-supplying glaciers has decreased continuously since the early 1970s with a total reduction of about–2.13±0.03 km<sup>2</sup>. Our study has indicative significance to the research of regional climate change.
基金National Basic Research Program of China, No.2009CB825105National Natural Science Foundation of China, No.40671015
文摘Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited precipitation, and where human activities have greatly transformed natural desert system by clearing natural vegetation, expanding oases and even building dams on inland rivers. However, the current studies on land use patterns are still characterized by field investigations and case studies, with almost no solid scientific basis. This paper holds that land types and their combination patterns are the principal basis for designing sustainable land use patterns, and that GIS and RS-based large-scale land type mapping and the study of their spatial combination structures should be coordinated with the demand of social development. The existing environmental problems induced by irrational land use mostly result from their deviation from the natural properties of land types. Taking the northern slope of the Tianshan Mountains (NSTM) as an example and considering land type patterns as the basis of land use patterns, this paper improves the vertical oa- sis-and-mid-mountain two-belts development model and the sustainable mountain land use model for arid lands put forward in recent years; and in terms of oases patterns, it outlines oasis development models, including intensive land use pattern in alluvial-diluvial fans, moderate agricultural development pattern in alluvial plains, and ecological land use pattern in river-end oases.
基金supported by the National Basic Research Program of China(Grant No.2006CB400502)the World Bank Cooperative Project(Grant No.THSD-07)the 111 Program of the Ministry of Education and the State Administration of Foreign Expert Affairs,China(Grant No.B08048)
文摘This study simulated and predicted the runoff of the Aksu River Basin, a typical river basin supplied by snowmelt in an arid mountain region, with a limited data set and few hydrological and meteorological stations. Two hydrological models, the snowmelt-runoff model (SRM) and the Danish NedbФr-AfstrФmnings rainfall-runoff model (NAM), were used to simulate daily discharge processes in the Aksu River Basin. This study used the snow-covered area from MODIS remote sensing data as the SRM input. With the help of ArcGIS software, this study successfully derived the digital drainage network and elevation zones of the basin from digital elevation data. The simulation results showed that the SRM based on MODIS data was more accurate than NAM. This demonstrates that the application of remote sensing data to hydrological snowmelt models is a feasible and effective approach to runoff simulation and prediction in arid unguaged basins where snowmelt is a major runoff factor.