The effect of activation properties of the precursors of zeolite directly prepared from kaolin influenced by microwave field and conventional heating was investigated.XRD,TG-DSC,FT-IR,SEM,particle size analysis,specif...The effect of activation properties of the precursors of zeolite directly prepared from kaolin influenced by microwave field and conventional heating was investigated.XRD,TG-DSC,FT-IR,SEM,particle size analysis,specific surface area(BET),pore size distribution(BJH)and N2 adsorption-desorption were discussed to determine the optimal activation temperature.It is concluded that the conversion of kaolin to metakaolin in the microwave field is at 500°C holding for 30 min,which is 100°C lower than that in conventional calcination and 90 min shorter,and the phase transition process of kaolin under the effect of microwave field is the same as that of conventional heating method.SEM analysis indicates that the particle size is more uniform and agglomeration appears slightly in the microwave field.The N2 adsorption-desorption isotherm,BET and BJH of kaolin indicate that the pore properties are almost invariable regardless of calcination route during the process of calcining kaolin into metakaolin.It indicates that microwave calcination is superior to conventional calcination in the activation pathway of kaolin.It is attributed to microwave heating relying on objects to absorb microwave energy and convert it into thermal energy,which can simultaneously and uniformly heat the entire substance.展开更多
A novel instrument named Micro-Electro-Mechanical System(MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the...A novel instrument named Micro-Electro-Mechanical System(MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio,or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.展开更多
基金Projects(51604135,51504116)supported by the National Natural Science Foundational of ChinaProject(YNWR-QNBJ-2018-323)supported by the Yunan Ten Thousand Talents Plan Young&Elite Talents Project,China。
文摘The effect of activation properties of the precursors of zeolite directly prepared from kaolin influenced by microwave field and conventional heating was investigated.XRD,TG-DSC,FT-IR,SEM,particle size analysis,specific surface area(BET),pore size distribution(BJH)and N2 adsorption-desorption were discussed to determine the optimal activation temperature.It is concluded that the conversion of kaolin to metakaolin in the microwave field is at 500°C holding for 30 min,which is 100°C lower than that in conventional calcination and 90 min shorter,and the phase transition process of kaolin under the effect of microwave field is the same as that of conventional heating method.SEM analysis indicates that the particle size is more uniform and agglomeration appears slightly in the microwave field.The N2 adsorption-desorption isotherm,BET and BJH of kaolin indicate that the pore properties are almost invariable regardless of calcination route during the process of calcining kaolin into metakaolin.It indicates that microwave calcination is superior to conventional calcination in the activation pathway of kaolin.It is attributed to microwave heating relying on objects to absorb microwave energy and convert it into thermal energy,which can simultaneously and uniformly heat the entire substance.
基金financially supported by the National Key R&D Program of China(Grant No.2016YFC0402306)the National Natural Science Foundation of China(Grant No.51779149)
文摘A novel instrument named Micro-Electro-Mechanical System(MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio,or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.