As an essential part of the industrial Internet of Things(IoT)in power systems,the development of advanced metering infrastructure(AMI)facilitates services such as energy monitoring,load forecasting,and demand respons...As an essential part of the industrial Internet of Things(IoT)in power systems,the development of advanced metering infrastructure(AMI)facilitates services such as energy monitoring,load forecasting,and demand response.However,there is a growing risk of privacy disclosure with the wide installation of smart meters,for they transmit readings and sensitive data simultaneously.To guarantee the confidentiality of the sensitive information and authenticity of smart meter readings,we proposed a privacy-preserving scheme based on digital watermarking and elliptic-curve cryptography(ECC)asymmetric encryption.The sensitive data are encrypted using the public key and are hidden in the collected readings using digital watermark.Only the authorized user can extract watermark and can decrypt the confidential data using its private key.The proposed method realizes secure end-to-end confidentiality of the sensitive information.It has faster computing speed and can verify the data source and ensure the authenticity of readings.The example results show that the proposed method has little influence on the original data and unauthorized access cannot be completed within a reasonable time.On embedded hardware,the processing speed of the proposed method is better than the existing methods.展开更多
In fruit production,the application of the plant growth regulator 1-(2-chloro-4-pyridyl)-3-phenylurea(CPPU)dulls the fruit aroma.Gas chromatography-mass spectrometry and transcriptome analyses were performed on CPPU-t...In fruit production,the application of the plant growth regulator 1-(2-chloro-4-pyridyl)-3-phenylurea(CPPU)dulls the fruit aroma.Gas chromatography-mass spectrometry and transcriptome analyses were performed on CPPU-treated and pollinated fruits to determine how CPPU affects the production of aroma in melon fruit.The results showed that the contents of two important esters(benzyl acetate and phenethyl acetate)in the CPPU-treated fruits were significantly lower than those in the pollinated fruits.Transcriptome sequencing data revealed that most differentially expressed genes were involved in“phenylalanine metabolism”pathway,and their expression was significantly decreased in the CPPU-treated fruits.Further analysis showed that the phenylalanine content in the CPPU-treated fruits was significantly higher than that in the pollinated fruits.In summary,CPPU application interferes with phenylalanine metabolism in melon fruits and affects the production of aromatic esters.展开更多
基金Project(SGZJHZ00HLJS2000871)supported by the State Grid Science and Technology Project,China。
文摘As an essential part of the industrial Internet of Things(IoT)in power systems,the development of advanced metering infrastructure(AMI)facilitates services such as energy monitoring,load forecasting,and demand response.However,there is a growing risk of privacy disclosure with the wide installation of smart meters,for they transmit readings and sensitive data simultaneously.To guarantee the confidentiality of the sensitive information and authenticity of smart meter readings,we proposed a privacy-preserving scheme based on digital watermarking and elliptic-curve cryptography(ECC)asymmetric encryption.The sensitive data are encrypted using the public key and are hidden in the collected readings using digital watermark.Only the authorized user can extract watermark and can decrypt the confidential data using its private key.The proposed method realizes secure end-to-end confidentiality of the sensitive information.It has faster computing speed and can verify the data source and ensure the authenticity of readings.The example results show that the proposed method has little influence on the original data and unauthorized access cannot be completed within a reasonable time.On embedded hardware,the processing speed of the proposed method is better than the existing methods.
基金the China Agriculture Research System of MOF and MARA(CARS-25)the Special Fund for Agro-scientific Research in the Public Interest,China(201203080)+1 种基金the Fundamental Research Funds for the Central Universities,China(2662018PY039)the Hubei Provincial Natural Science Foundation of China(2019CFA017).
文摘In fruit production,the application of the plant growth regulator 1-(2-chloro-4-pyridyl)-3-phenylurea(CPPU)dulls the fruit aroma.Gas chromatography-mass spectrometry and transcriptome analyses were performed on CPPU-treated and pollinated fruits to determine how CPPU affects the production of aroma in melon fruit.The results showed that the contents of two important esters(benzyl acetate and phenethyl acetate)in the CPPU-treated fruits were significantly lower than those in the pollinated fruits.Transcriptome sequencing data revealed that most differentially expressed genes were involved in“phenylalanine metabolism”pathway,and their expression was significantly decreased in the CPPU-treated fruits.Further analysis showed that the phenylalanine content in the CPPU-treated fruits was significantly higher than that in the pollinated fruits.In summary,CPPU application interferes with phenylalanine metabolism in melon fruits and affects the production of aromatic esters.