Rare earth elements (REEs) are beneficial in developing modern technologies, especially electronics. Their extractions from natural deposits and their recycling require chemical processes that should be monitored rega...Rare earth elements (REEs) are beneficial in developing modern technologies, especially electronics. Their extractions from natural deposits and their recycling require chemical processes that should be monitored regarding efficiency and environmental sustainability. The purpose of this study is to develop impedimetric sensors for the sensitive detection of the rare earth elements La and Ce by modifying a platinum electrode with four isosorbide-based oligo (ether sulfone)s. These oligomers, functionalized with different end groups (hydroxyl, fluor, amine, maleimide), were obtained with satisfactory yields, starting from isosorbide and bis (4-fuorophenyl) sulphone monomers. The resulting oligomers were characterized by NMR, DSC, and ATG analysis. The dihydroxy-oligo (ether sulfone) modified sensor showed the highest analytical performance compared to the other oligomers. The detection limit is 10−9 M for La and 3 × 10−9 M for Ce which is lower than that of most of the published electrochemical sensors.展开更多
文摘Rare earth elements (REEs) are beneficial in developing modern technologies, especially electronics. Their extractions from natural deposits and their recycling require chemical processes that should be monitored regarding efficiency and environmental sustainability. The purpose of this study is to develop impedimetric sensors for the sensitive detection of the rare earth elements La and Ce by modifying a platinum electrode with four isosorbide-based oligo (ether sulfone)s. These oligomers, functionalized with different end groups (hydroxyl, fluor, amine, maleimide), were obtained with satisfactory yields, starting from isosorbide and bis (4-fuorophenyl) sulphone monomers. The resulting oligomers were characterized by NMR, DSC, and ATG analysis. The dihydroxy-oligo (ether sulfone) modified sensor showed the highest analytical performance compared to the other oligomers. The detection limit is 10−9 M for La and 3 × 10−9 M for Ce which is lower than that of most of the published electrochemical sensors.