期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Synergistic coupling among Mg_(2)B_(2)O_(5),polycarbonate and N,Ndimethylformamide enhances the electrochemical performance of PVDF-HFP-based solid electrolyte
1
作者 Yutong Jing Qiang Lv +8 位作者 Yujia Chen Bo Wang bochen wu Cheng Li Shengbo Yang Zhipeng He Dianlong Wang Huakun Liu Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期158-168,共11页
Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compr... Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compromise the mechanical performance and safety,hindering practical application of SPEs.In this work,a composite solid electrolyte(CSE)is designed through the organic-inorganic syner-gistic interaction among N,N-dimethylformamide(DMF),polycarbonate(PC),and Mg_(2)B_(2)O_(5) in poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP).Flame-retardant Mg_(2)B_(2)O_(5) nanowires provide non-flammability to the prepared CSEs,and the addition of PC improves the dispersion of Mg_(2)B_(2)O_(5) nanowires.Simultaneously,the organic-inorganic synergistic action of PC plasticizer and Mg_(2)B_(2)O_(5) nanowires pro-motes the dissociation degree of LiTFSI and reduces the crystallinity of PVDF-HFP,enabling rapid Li ion transport.Additionally,Raman spectroscopy and DFT calculations confirm the coordination between Mg atoms in Mg_(2)B_(2)O_(5) and N atoms in DMF,which exhibits Lewis base-like behavior attacking adjacent C-F and C-H bonds in PVDF-HFP while inducing dehydrofluorination of PVDF-HFP.Based on the syner-gistic coupling of Mg_(2)B_(2)O_(5),PC,and DMF in the PVDF-HFP matrix,the prepared CSE exhibits superior ion conductivity(9.78×10^(-4) s cm^(-1)).The assembled Li symmetric cells cycle stably for 3900 h at a current density of 0.1 mA cm^(-2) without short circuit.The LFP||Li cells assembled with PDL-Mg_(2)B_(2)O_(5)/PC CSEs show excellent rate capability and cycling performance,with a capacity retention of 83.3%after 1000 cycles at 0.5 C.This work provides a novel approach for the practical application of organic-inorganic Synergistic CSEs in LMBs. 展开更多
关键词 Composite solid electrolytes Safe Li metal batteries Synergistic coupling effect Poly(vinylidene fluoride-co-hexafluoropro pylene)
在线阅读 下载PDF
Bifunctional flame retardant solid-state electrolyte toward safe Li metal batteries 被引量:4
2
作者 Qiang Lv Yajie Song +10 位作者 Bo Wang Shangjie Wang bochen wu Yutong Jing Huaizheng Ren Shengbo Yang Lei Wang Lihui Xiao Dianlong Wang Huakun Liu Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期613-622,I0014,共11页
Solid polymer electrolytes(SPEs)are one of the most promising alternatives to flammable liquid electrolytes for building safe Li metal batteries.Nevertheless,the poor ionic conductivity at room temperature(RT)and low ... Solid polymer electrolytes(SPEs)are one of the most promising alternatives to flammable liquid electrolytes for building safe Li metal batteries.Nevertheless,the poor ionic conductivity at room temperature(RT)and low resistance to Li dendrites seriously hinder the commercialization of SPEs.Herein,we design a bifunctional flame retardant SPE by combining hydroxyapatite(HAP)nanomaterials with Nmethyl pyrrolidone(NMP)in the PVDF-HFP matrix.The addition of HAP generates a hydrogen bond network with the PVDF-HFP matrix and cooperates with NMP to facilitate the dissociation of Li TFSI in the PVDF-HFP matrix.Consequently,the prepared SPE demonstrates superior ionic conductivity at RT,excellent fireproof properties,and strong resistance to Li dendrites.The assembled Li symmetric cell with prepared SPE exhibits a stable cycling performance of over 1200 h at 0.2 m A cm^(-2),and the solid-state LiFePO_4||Li cell shows excellent capacity retention of 85.3%over 600 cycles at 0.5 C. 展开更多
关键词 Solid polymer electrolytes Safe Li metal batteries Li dendrites Hydroxyapatite N-methyl pyrrolidone PVDF-HFP Fireproof property
在线阅读 下载PDF
Recent advances in cathodes for all-solid-state lithium-sulfur batteries
3
作者 Shengbo Yang Bo Wang +8 位作者 Qiang Lv Nan Zhang Zekun Zhang Yutong Jing Jinbo Li Rui Chen bochen wu Pengfei Xu Dianlong Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期58-69,共12页
Lithium-sulfur(Li-S)batteries have been regarded as the candidate for the next-generation energy storage system due to the high theoretical specific capacity(1675 m Ah/g), energy density(2600 Wh/kg)and the abundance o... Lithium-sulfur(Li-S)batteries have been regarded as the candidate for the next-generation energy storage system due to the high theoretical specific capacity(1675 m Ah/g), energy density(2600 Wh/kg)and the abundance of elemental sulfur, but the application of Li-S batteries is impeded by a series of problems. Recently, all-solid-state Li-S batteries(ASSLSBs) have drawn great attention because many drawbacks such as safety issues caused by metallic lithium anodes and organic liquid electrolytes can be overcome through the use of solid-state electrolytes(SEs). However, not only the problems brought by sulfur cathodes still exist, but more trouble arouses from the interfaces between SEs and cathodes, hampering the practical application of ASSLSBs. Therefore, in order to deal with the problems, enormous endeavors have been done on ASSLSB cathodes during the past few decades, including engineering of cathode active materials, cathode host materials, cathode binder materials and cathode structures. In this review, the electrochemical mechanism and existing problems of ASSLSBs are briefly introduced. Subsequently, the strategies for developing cathode materials and designing cathode structures are presented. Then there follows a brief discussion of SE problems and expectations, and finally, the challenges and perspectives of ASSLSBs are summarized. 展开更多
关键词 All-solid-state Li-S battery Cathode active material Cathode host material Cathode structure Solid-state electrolyte
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部