"Dissolution,migration,and deposition"of transition metal ions (TMIs) result in capacity degradation of lithium-ion batteries (LIBs).Understanding such detrimental mechanism of TMIs is critical to the develo..."Dissolution,migration,and deposition"of transition metal ions (TMIs) result in capacity degradation of lithium-ion batteries (LIBs).Understanding such detrimental mechanism of TMIs is critical to the development of LIBs with long cycle life.In most previous works,TMIs were directly introduced into the electrolyte to investigate such a detrimental mechanism.In these cases,the TMIs are deposited directly on the fresh anode surface.However,in the practical battery system,the TMIs are deposited on the anode covered with solid electrolyte interphase (SEI) film.Whether the pre-presence of SEI film on anode surface influences the deposition and detriment of TMIs is unclear.In this work,the deposition of Co element on graphite anode with and without SEI film were systematically studied.The results clearly show that,in comparison with that of fresh graphite (SEI-free),the presence of SEI film aggravates the deposition of Co ions due to the Li^(+)–Co^(2+) ion exchange between the SEI and Co^(2+)-containing electrolyte without the driving of the electric field,leading to faster capacity fading of graphite anode.Therefore,how to regulate electrolytes and film-forming additives to design the components of SEI and prevent its exchange with TMIs,is a crucial way to inhibit the deposition and detriment of TMIs on graphite anode.展开更多
Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle ...Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle effect that originates from soluble intermediates, like lithium polysulfides. To address this issue, we report a novel laminar composite, N,O-carboxymethyl chitosan-reduced graphene oxide(CC-rGO), which is manufactured via the self-assembly of CC onto GO and subsequent reduction of GO under an extreme condition of 1 Pa and-50°C. The synthesized laminar CC-rGO composite is mixed with acetylene black(AB) and coated on a commercial polypropylene(PP) membrane, resulting in a separator(CC-rGO/AB/PP) that can not only completely suppress the polysulfides penetration, but also can accelerate the lithium ion transportation, providing a Li-S battery with excellent cyclic stability and rate capability. As confirmed by theoretic simulations, this unique feature of CC-rGO is attributed to its strong repulsive interaction to polysulfide anions and its benefit for fast lithium ion transportation through the paths paved by the heteroatoms in CC.展开更多
基金supported by the National Natural Science Foundation of China (21972049, 21573080)the Guangdong Program for Distinguished Young Scholar (2017B030306013)the Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation ("Climbing Program" pdjh2021b0140)。
文摘"Dissolution,migration,and deposition"of transition metal ions (TMIs) result in capacity degradation of lithium-ion batteries (LIBs).Understanding such detrimental mechanism of TMIs is critical to the development of LIBs with long cycle life.In most previous works,TMIs were directly introduced into the electrolyte to investigate such a detrimental mechanism.In these cases,the TMIs are deposited directly on the fresh anode surface.However,in the practical battery system,the TMIs are deposited on the anode covered with solid electrolyte interphase (SEI) film.Whether the pre-presence of SEI film on anode surface influences the deposition and detriment of TMIs is unclear.In this work,the deposition of Co element on graphite anode with and without SEI film were systematically studied.The results clearly show that,in comparison with that of fresh graphite (SEI-free),the presence of SEI film aggravates the deposition of Co ions due to the Li^(+)–Co^(2+) ion exchange between the SEI and Co^(2+)-containing electrolyte without the driving of the electric field,leading to faster capacity fading of graphite anode.Therefore,how to regulate electrolytes and film-forming additives to design the components of SEI and prevent its exchange with TMIs,is a crucial way to inhibit the deposition and detriment of TMIs on graphite anode.
基金supported by the National Key Research and Development Project (Grant No. 2018YFE0124800)the National Key Research Program of China (Grant No.2022YFA1503100)+7 种基金Science and Technology Project of Jiangsu Province (Grant No. BZ2020011)National Natural Science Foundation of China (Grants No. 22173067)the Science and Technology Development FundMacao SAR(FDCT No. 0052/2021/A)Collaborative Innovation Center of Suzhou Nano Science&Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle effect that originates from soluble intermediates, like lithium polysulfides. To address this issue, we report a novel laminar composite, N,O-carboxymethyl chitosan-reduced graphene oxide(CC-rGO), which is manufactured via the self-assembly of CC onto GO and subsequent reduction of GO under an extreme condition of 1 Pa and-50°C. The synthesized laminar CC-rGO composite is mixed with acetylene black(AB) and coated on a commercial polypropylene(PP) membrane, resulting in a separator(CC-rGO/AB/PP) that can not only completely suppress the polysulfides penetration, but also can accelerate the lithium ion transportation, providing a Li-S battery with excellent cyclic stability and rate capability. As confirmed by theoretic simulations, this unique feature of CC-rGO is attributed to its strong repulsive interaction to polysulfide anions and its benefit for fast lithium ion transportation through the paths paved by the heteroatoms in CC.