Water wave energy exhibits great potential toalleviate the global energy crisis. However, harvesting andutilizing wave energy are challenging due to its irregularity,randomness, and low frequency. Triboelectric nanoge...Water wave energy exhibits great potential toalleviate the global energy crisis. However, harvesting andutilizing wave energy are challenging due to its irregularity,randomness, and low frequency. Triboelectric nanogenerators(TENGs) have gained significant attention for harvesting waveenergy with high efficiency. This study presents a novelellipsoidal, pendulum-like TENG integrating both liquid-liquid(L-L) and solid-solid (S-S) triboelectricity (LS-TENG). Thisinnovative design enables continuous wave energy harvestingand self-powered marine environment monitoring under variousconditions, including temperature, humidity, and light intensity. The binary immiscible liquids within the LS-TENG’s innersoft balloon create dynamic, and self-adjustable L-L contact interfaces, significantly increasing the L-L contact area andenhancing L-L contact electrification (CE). The unique self-adaptive, soft S-S contact increases the S-S contact areacompared to traditional hard point contact, better adapting to the irregular movements of waves and promoting efficient S-SCE. The LS-TENG achieves highly efficient wave energy harvesting by coupling L-L and S-S CE. Furthermore, the uniquesoft contact design protects the S-S interfaces from mechanical wear and damage during long-term work. The LS-TENG’snovel structure provides an innovative and effective way for water wave energy harvesting.展开更多
基金support from the National Natural Science Foundation of China(Nos.52173298 and 52192611)the National Key R&D Project from Minister of Science and Technology(No.2021YFA1201603)+1 种基金Beijing Natural Science Foundation(No.Z230024)the Fundamental Research Funds for the Central Universities.
文摘Water wave energy exhibits great potential toalleviate the global energy crisis. However, harvesting andutilizing wave energy are challenging due to its irregularity,randomness, and low frequency. Triboelectric nanogenerators(TENGs) have gained significant attention for harvesting waveenergy with high efficiency. This study presents a novelellipsoidal, pendulum-like TENG integrating both liquid-liquid(L-L) and solid-solid (S-S) triboelectricity (LS-TENG). Thisinnovative design enables continuous wave energy harvestingand self-powered marine environment monitoring under variousconditions, including temperature, humidity, and light intensity. The binary immiscible liquids within the LS-TENG’s innersoft balloon create dynamic, and self-adjustable L-L contact interfaces, significantly increasing the L-L contact area andenhancing L-L contact electrification (CE). The unique self-adaptive, soft S-S contact increases the S-S contact areacompared to traditional hard point contact, better adapting to the irregular movements of waves and promoting efficient S-SCE. The LS-TENG achieves highly efficient wave energy harvesting by coupling L-L and S-S CE. Furthermore, the uniquesoft contact design protects the S-S interfaces from mechanical wear and damage during long-term work. The LS-TENG’snovel structure provides an innovative and effective way for water wave energy harvesting.