期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Biomass Carbon Storage and Its Sequestration Potential of Afforestation under Natural Forest Protection Program in China 被引量:11
1
作者 ZHOU Wangming bernard joseph lewis +4 位作者 WU Shengnan YU Dapao ZHOU Li WEI Yawei DAI Limin 《Chinese Geographical Science》 SCIE CSCD 2014年第4期406-413,共8页
Based on the data from China′s Seventh Forest Inventory for the period of 2004–2008, area and stand volume of different types and age-classes of plantation were used to establish the relationship between biomass den... Based on the data from China′s Seventh Forest Inventory for the period of 2004–2008, area and stand volume of different types and age-classes of plantation were used to establish the relationship between biomass density and age of planted forests in different regions of the country. Combined with the plantation area in the first-stage of the Natural Forest Protection(NFP) program(1998–2010), this study calculated the biomass carbon storage of the afforestation in the first-stage of the program. On this basis, the carbon sequestration potential of these forests was estimated for the second stage of the program(2011–2020). Biomass carbon storage of plantation established in the first stage of the program was 33.67 Tg C, which was majority accounted by protection forests(30.26 Tg C). There was a significant difference among carbon storage in different regions, which depended on the relationship of biomass carbon density, forest age and plantation area. Under the natural growth, the carbon storage was forecasted to increase annually from 2011 to 2020, reaching 96.03 Tg C at the end of the second-stage of the program in 2020. The annual growth of the carbon storage was forecasted to be 6.24 Tg C/yr, which suggested that NFP program has a significant potential for enhancing carbon sequestration in plantation forests under its domain. 展开更多
关键词 Natural Forest Protection (NFP) program AFFORESTATION carbon storage carbon sequestration China
在线阅读 下载PDF
Forest Carbon Storage and Tree Carbon Pool Dynamics under Natural Forest Protection Program in Northeastern China 被引量:9
2
作者 WEI Yawei YU Dapao +6 位作者 bernard joseph lewis ZHOU Li ZHOU Wangming FANG Xiangmin ZHAO Wei WU Shengnan DAI Limin 《Chinese Geographical Science》 SCIE CSCD 2014年第4期397-405,共9页
The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting a... The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting and restoring the structures and functions of the natural forests through sustainable forest management. However, the role of forest carbon storage and tree carbon pool dynamics since the adoption of the NFP remains unknown. To address this knowledge gap, this study calculated forest carbon storage(tree, understory, forest floor and soil) in the forest region of northeastern(NE) China based on National Forest Inventory databases and field investigated databases. For tree biomass, this study utilized an improved method for biomass estimation that converts timber volume to total forest biomass; while for understory, forest floor and soil carbon storage, this study utilized forest type-specific mean carbon densities multiplied by their areas in the region. Results showed that the tree carbon pool under the NFP in NE China functioned as a carbon sink from 1998 to 2008, with an increase of 6.3 Tg C/yr, which was mainly sequestrated by natural forests(5.1 Tg C/yr). At the same time, plantations also acted as a carbon sink, reflecting an increase of 1.2 Tg C/yr. In 2008, total carbon storage in forests covered by the NFP in NE China was 4603.8 Tg C, of which 4393.3 Tg C was stored in natural forests and 210.5 Tg C in planted forests. Soil was the largest carbon storage component, contributing 69.5%–77.8% of total carbon storage; followed by tree and forest floor, accounting for 16.3%–23.0% and 5.0%–6.5% of total carbon storage, respectively. Understory carbon pool ranged from 1.9 to 42.7 Tg C, accounting for only 0.9% of total carbon storage. 展开更多
关键词 biomass-volume linear regression models mean carbon density method national forest inventory Key Forestry Projects northeastern China
在线阅读 下载PDF
A statistical analysis of spatiotemporal variations and determinant factors of forest carbon storage under China's Natural Forest Protection Program 被引量:9
3
作者 Shengnan Wu Jiaqi Li +5 位作者 Wangming Zhou bernard joseph lewis Dapao Yu Li Zhou Linhai Jiang Limin Dai 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期410-419,共10页
The Natural Forest Protection Program(NFPP)is one of the key ecological forestry programs in China.It not only facilitates the improvement of forest ecological quality in NFPP areas,but also plays a significant role i... The Natural Forest Protection Program(NFPP)is one of the key ecological forestry programs in China.It not only facilitates the improvement of forest ecological quality in NFPP areas,but also plays a significant role in increasing the carbon storage of forest ecosystems.The program covers 17 provinces,autonomous regions,and municipalities with correspondingly diverse forest resources and environments,ecological features,engineering measures and forest management regimes,all of which affect regional carbon storage.In this study,volume of timber harvest,tending area,pest-infested forest,firedamaged forest,reforestation,and average annual precipitation,and temperature were evaluated as factors that influence carbon storage.We developed a vector autoregression model for these seven indicators and we studied the dominant factors of carbon storage in the areas covered by NFPP.Timber harvest was the dominant factorinfluencing carbon storage in the Yellow and Yangtze River basins.Reforestation contributed most to carbon storage in the state-owned forest region in Xinjiang.In state-owned forest regions of Heilongjiang and Jilin Provinces,the dominant factors were forest fires and forest cultivation,respectively.For the enhancement of carbon sequestration capacity,a longer rotation period and a smaller timber harvest are recommended for the Yellow and Yangtze River basins.Trees should be planted in stateowned forests in Xinjiang.Forest fires should be prevented in state-owned forests in Heilongjiang,and greater forest tending efforts should be made in the state-owned forests in Jilin. 展开更多
关键词 Forest carbon storage Influencing factors Natural forest protection program Variance decomposition Vector autoregression(VAR) model
在线阅读 下载PDF
Effects of Logging Intensity on Structure and Composition of a Broadleaf-Korean Pine Mixed Forest on Changbai Mountains,Northeast China 被引量:2
4
作者 WU Zhijun SU Dongkai +6 位作者 NIU Lijun bernard joseph lewis YU Dapao ZHOU Li ZHOU Wangming WU Shengnan DAI Limin 《Chinese Geographical Science》 SCIE CSCD 2016年第1期59-67,共9页
In order to identify a harvesting model which is beneficial for broadleaf-Korean pine mixed forest (BKF) sustainability, we investigated four types of harvested stands which have been logged with intensities of 0 (... In order to identify a harvesting model which is beneficial for broadleaf-Korean pine mixed forest (BKF) sustainability, we investigated four types of harvested stands which have been logged with intensities of 0 (T0, control), 15% (T1, low intensity), 35% (T2, moderate intensity), and 100% (T3, clear-cutting), and examined the impacts of logging intensity on composition and structure of these stands. Results showed that there were no significant differences between To and T1 for all structural characteristics, except for density of seeding and large trees. The mean diameter at breast height (DBH, 1.3 m above the ground), stem density and basal area of large trees in T2 were significantly lower than in To, while the density of seedlings and saplings were significantly higher in T2 than in To. Structural characteristics in T3 were entirely different from To. Dominant tree species in primary BKF comprised 93%, 85%, 45% and 10% of the total basal area in T0, T1, T2 and T3, respectively. Three community similarity indices, the Jaccard's similarity coefficient (Cj); the Morisita-Hom index (CMH); and the Bray-Curtis index (CN), were the highest for T0 and T1, followed by T0 and T2, and T0 and T3, in generally. These results suggest that effects of harvesting on forest composition and structure are related to logging intensities. Low intensity harvesting is conductive to preserving forest structure and composition, allowing it to recover in a short time period. The regime characterized by low logging intensity and short rotations appears to be a sustainable harvesting method for BKF on the Changbai Mountains. 展开更多
关键词 broadleaf-Korean pine mixed forest forest structure species composition logging intensity Changbai Mountains
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部