期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A GROUND STATE SOLUTION TO THE CHERN-SIMONS-SCHRODINGER SYSTEM
1
作者 Jin DENG benniao li 《Acta Mathematica Scientia》 SCIE CSCD 2022年第5期1743-1764,共22页
In this paper,we consider the Chern-Simons-Schrodinger system{−Δu+[e^(2)|A|^(2)+(V(x)+2eA_(0))+2(1+κq/2)N]u+q|u|^(p−2)u=0,−ΔN+κ^(2)q^(2)N+q(1+κq2)u^(2)=0,κ(∂_(1)A_(2)−∂_(2)A_(1))=−eu^(2),∂_(1)A_(1)+∂_(2)A_(2)=0,... In this paper,we consider the Chern-Simons-Schrodinger system{−Δu+[e^(2)|A|^(2)+(V(x)+2eA_(0))+2(1+κq/2)N]u+q|u|^(p−2)u=0,−ΔN+κ^(2)q^(2)N+q(1+κq2)u^(2)=0,κ(∂_(1)A_(2)−∂_(2)A_(1))=−eu^(2),∂_(1)A_(1)+∂_(2)A_(2)=0,κ∂_(1)A_(0)=e^(2)A_(2)u^(2),κ∂_(2)A_(0)=−e^(2)A_(1)u^(2),where u∈H^(1)(R^(2)),p∈(2,4),Aα:R^(2)→R are the components of the gauge potential(α=0,1,2),N:R^(2)→R is a neutral scalar field,V(x)is a potential function,the parametersκ,q>0 represent the Chern-Simons coupling constant and the Maxwell coupling constant,respectively,and e>0 is the coupling constant.In this paper,the truncation function is used to deal with a neutral scalar field and a gauge field in the Chern-Simons-Schrödinger problem.The ground state solution of the problem(P)is obtained by using the variational method. 展开更多
关键词 Chern-Simons-Schrodinger systems ground state solution variational method
在线阅读 下载PDF
Infinitely many dichotomous solutions for the Schrödinger-Poisson system
2
作者 Yuke He benniao li Wei Long 《Science China Mathematics》 SCIE CSCD 2024年第9期2049-2070,共22页
In this paper,we consider the following Schrodinger-Poisson system{-ε^(2)Δu+V(x)u+K(x)Φ(x)u=|u|^(p-1)u in R^(N),-ΔΦ(x)=K(x)u^(2)in RN,,where e is a small parameter,1<p<N+2/N-2,N∈[3,6],and V(x)and K(x)are p... In this paper,we consider the following Schrodinger-Poisson system{-ε^(2)Δu+V(x)u+K(x)Φ(x)u=|u|^(p-1)u in R^(N),-ΔΦ(x)=K(x)u^(2)in RN,,where e is a small parameter,1<p<N+2/N-2,N∈[3,6],and V(x)and K(x)are potential functions with different decay at infinity.We first prove the non-degeneracy of a radial low-energy solution.Moreover,by using the non-degenerate solution,we construct a new type of infinitely many solutions for the above system,which are called“dichotomous solutions”,i.e.,these solutions concentrate both in a bounded domain and near infinity. 展开更多
关键词 dichotomous solutions NON-DEGENERACY Schrodinger-Poisson system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部