Two reported three-dimensional covalent organic frameworks(3D-COFs),COF-300 and COF-301,which have hierarchical porous structures and large pore volumes,were synthesized and employed as host materials for lithium-sulf...Two reported three-dimensional covalent organic frameworks(3D-COFs),COF-300 and COF-301,which have hierarchical porous structures and large pore volumes,were synthesized and employed as host materials for lithium-sulfur batteries.Owing to possessing excellent porosities as well as abundant hydroxyl groups in the pore walls,COF-301 can not only trap lithium polysulfides(PSs)via physical adsorption inside the pores,but also capture PSs by chemical interactions to relieve the shuttle effect.Interestingly,it is the first time that 3D-COFs were utilized as host materials for lithium-sulfur batteries as well as hydroxyl groups were introduced into COFs for improving the battery performance.As a result,COF-301@S as cathode material could reserve the capacity of 411.6 mA·h·g^-1 after 500 cycles with only 0.081%fading per cycle at 0.5 C,exhibiting better battery performance compared with COF-300@S.This study not only expands the applications of 3D-COFs but also provides a new route for designing lithium-sulfur batteries.展开更多
Porous organic polymers(POPs)are materials with covalently bonded,thermally stable backbones that exhibit large accessible surface areas and intriguing properties applicable to fields such as gas storage and separatio...Porous organic polymers(POPs)are materials with covalently bonded,thermally stable backbones that exhibit large accessible surface areas and intriguing properties applicable to fields such as gas storage and separation,catalysis,and optoelectronics.Compared to analogous inorganic porous materials,POPs feature a wider range of pore size,larger surface area,readily available functional groups for post-synthesis functionalization,etc.,which enables their design for targeted applications.展开更多
A series of thiophene-based conjugated microporous polymers (ThPOPs) have been synthesized on the basis of ferric chloride-catalyzed oxidative coupling polymerization of muRi-thienyl monomers. The structures of ThPO...A series of thiophene-based conjugated microporous polymers (ThPOPs) have been synthesized on the basis of ferric chloride-catalyzed oxidative coupling polymerization of muRi-thienyl monomers. The structures of ThPOPs were confirmed via solid-state t3C CP/MAS NMR spectroscopy and Fourier-transform infrared spectroscopy. The ThPOPs possess high porosities and their high Brunauer-Emmett-Teller specific surface area results vary between 350 and 1320mZg . The presence of abundant ultra-micronores at 0.50-0.63 nm allows ThPOPs efficient gas (carbon dioxide, methane, and hydrogen) adsorption.展开更多
Porous organic polymers(POPs) are porous materials composed of light elements such as C, H, N, and O. The benign characters,including large surface area, good physical and chemical stability, well-defined chemical com...Porous organic polymers(POPs) are porous materials composed of light elements such as C, H, N, and O. The benign characters,including large surface area, good physical and chemical stability, well-defined chemical composition, wide ranges of monomer selection, and strong designability, have made POPs one of the frontiers in materials research. In this review, we discussed the design and synthesis of various POP materials that mainly led by Chinese scientists, including conjugated microporous polymers(CMPs), porous aromatic frameworks(PAFs), and hypercrosslinked porous polymers(HCPs), as well as crystalline POPs comprised of covalent organic frameworks(COFs) and a special class of COFs with triazine rings, covalent triazine frameworks(CTFs), and supramolecular organic frameworks(SOFs), and sorted out their main applications in adsorption, separation,catalysis, and electrochemistry fields.展开更多
Nanochemistry is a term describing the chemistry at the nanometer scale,which was named after nano-terms,such as nanotechnology and nanoscience.Although there is not any exact and/or official definition,nano-chemistry...Nanochemistry is a term describing the chemistry at the nanometer scale,which was named after nano-terms,such as nanotechnology and nanoscience.Although there is not any exact and/or official definition,nano-chemistry is a field of chemistry that constructs/assem-bles the nanoscale species through covalent bonds or non-covalent intermolecular weak forces,characterizes their chemical and spatial structure employing a wide variety of technologies,investigates the interactions/reactions of these nanoscale species or with smaller molecules,and utilizes these nanoscale species for different purposes on the basis of their related properties.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21674026,21574032,51573125,51573147,51803149,51973155,and 51633007(the State Key Program))the Sino-German Center for Research Promotion(No.GZ1286)the Chinese Academy of Sciences(No.121D11KYSB20170031).
文摘Two reported three-dimensional covalent organic frameworks(3D-COFs),COF-300 and COF-301,which have hierarchical porous structures and large pore volumes,were synthesized and employed as host materials for lithium-sulfur batteries.Owing to possessing excellent porosities as well as abundant hydroxyl groups in the pore walls,COF-301 can not only trap lithium polysulfides(PSs)via physical adsorption inside the pores,but also capture PSs by chemical interactions to relieve the shuttle effect.Interestingly,it is the first time that 3D-COFs were utilized as host materials for lithium-sulfur batteries as well as hydroxyl groups were introduced into COFs for improving the battery performance.As a result,COF-301@S as cathode material could reserve the capacity of 411.6 mA·h·g^-1 after 500 cycles with only 0.081%fading per cycle at 0.5 C,exhibiting better battery performance compared with COF-300@S.This study not only expands the applications of 3D-COFs but also provides a new route for designing lithium-sulfur batteries.
文摘Porous organic polymers(POPs)are materials with covalently bonded,thermally stable backbones that exhibit large accessible surface areas and intriguing properties applicable to fields such as gas storage and separation,catalysis,and optoelectronics.Compared to analogous inorganic porous materials,POPs feature a wider range of pore size,larger surface area,readily available functional groups for post-synthesis functionalization,etc.,which enables their design for targeted applications.
基金supported by the National Natural Science Foundation of China(21474027,21574032)
文摘A series of thiophene-based conjugated microporous polymers (ThPOPs) have been synthesized on the basis of ferric chloride-catalyzed oxidative coupling polymerization of muRi-thienyl monomers. The structures of ThPOPs were confirmed via solid-state t3C CP/MAS NMR spectroscopy and Fourier-transform infrared spectroscopy. The ThPOPs possess high porosities and their high Brunauer-Emmett-Teller specific surface area results vary between 350 and 1320mZg . The presence of abundant ultra-micronores at 0.50-0.63 nm allows ThPOPs efficient gas (carbon dioxide, methane, and hydrogen) adsorption.
文摘Porous organic polymers(POPs) are porous materials composed of light elements such as C, H, N, and O. The benign characters,including large surface area, good physical and chemical stability, well-defined chemical composition, wide ranges of monomer selection, and strong designability, have made POPs one of the frontiers in materials research. In this review, we discussed the design and synthesis of various POP materials that mainly led by Chinese scientists, including conjugated microporous polymers(CMPs), porous aromatic frameworks(PAFs), and hypercrosslinked porous polymers(HCPs), as well as crystalline POPs comprised of covalent organic frameworks(COFs) and a special class of COFs with triazine rings, covalent triazine frameworks(CTFs), and supramolecular organic frameworks(SOFs), and sorted out their main applications in adsorption, separation,catalysis, and electrochemistry fields.
文摘Nanochemistry is a term describing the chemistry at the nanometer scale,which was named after nano-terms,such as nanotechnology and nanoscience.Although there is not any exact and/or official definition,nano-chemistry is a field of chemistry that constructs/assem-bles the nanoscale species through covalent bonds or non-covalent intermolecular weak forces,characterizes their chemical and spatial structure employing a wide variety of technologies,investigates the interactions/reactions of these nanoscale species or with smaller molecules,and utilizes these nanoscale species for different purposes on the basis of their related properties.