A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides...A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD+DDE)/DDT in soils under three land usages were: paddy field 〉 tree land 〉 fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD+DDE)/DDT 〉1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.展开更多
Problems associated with organochlorine pesticide (OCP)-contaminated sites in China have received wide attention. To solve such problems, innovative ex-situ methods of site remediation are urgently needed. We invest...Problems associated with organochlorine pesticide (OCP)-contaminated sites in China have received wide attention. To solve such problems, innovative ex-situ methods of site remediation are urgently needed. We investigated the feasibility of the extraction method with different organic solvents, ethanol, 1-propanol, and three fractions of petroleum ether, using a soil collected from Wujiang (W J), China, a region with long-term contamination of dichlorodiphenyltrichloroethanes (DDTs). We evaluated different influential factors, including organic solvent concentration, washing time, mixing speed, solutiomto-soil ratio, and washing temperature, on the removal of DDTs from the WJ soil. A set of relatively better parameters were selected for extraction with 100 mL L-1 petroleum ether (60-90 ℃): washing time of 180 min, mixing speed of 100 r min-I, solution-to-soil ratio of 10:1, and washing temperature of 50 ℃. These selected parameters were also applied on three other seriously OCP-polluted soils. Results demonstrated their broad-spectrum effectiveness and excellent OCP extraction performance on the contaminated soils with different characteristics.展开更多
Inoculating soil with an adapted microbial community is a more effective bioaugmentation approach than inoculation with pure strains in bioremediation.However,information on the potential of different inocula from sit...Inoculating soil with an adapted microbial community is a more effective bioaugmentation approach than inoculation with pure strains in bioremediation.However,information on the potential of different inocula from sites with varying contamination levels and pollution histories in soil remediation is lacking.The objective of the study was to investigate the potential of adapted microorganisms in soil inocula,with different contamination levels and pollution histories,to degrade 1,2,4-trichlorobenzene (1,2,4-TCB).Three different soils from chlorobenzene-contaminated sites were inoculated into agricultural soils and soil suspension cultures spiked with 1,2,4-TCB.The results showed that 36.52% of the initially applied 1,2,4-TCB was present in the non-inoculated soil,whereas about 19.00% of 1,2,4-TCB was present in the agricultural soils inoculated with contaminated soils after 28 days of incubation.The soils inoculated with adapted microbial biomass (in the soil inocula) showed higher respiration and lower 1,2,4-TCB volatilization than the non-inoculated soils,suggesting the existence of 1,2,4-TCB adapted degraders in the contaminated soils used for inoculation.It was further confirmed in the contaminated soil suspension cultures that the concentration of inorganic chloride ions increased continuously over the entire experimental period.Higher contamination of the inocula led not only to higher degradation potential but also to higher residue formation.However,even inocula of low-level contamination were effective in enhancing the degradation of 1,2,4-TCB.Therefore,applying adapted microorganisms in the form of soil inocula,especially with lower contamination levels,could be an effective and environment-friendly strategy for soil remediation.展开更多
Due to easy volatilization of volatile organic compounds from water,it is difficult to monitor their aerobic biodegradation in the traditional single water system.Whether a two-liquid-phase system(TLPS) could overcome...Due to easy volatilization of volatile organic compounds from water,it is difficult to monitor their aerobic biodegradation in the traditional single water system.Whether a two-liquid-phase system(TLPS) could overcome this obstacle and enhance the degradation of volatile contaminants? In this study,a TLPS composed of silicone oil and water was employed to investigate the biodegradation of volatile compounds,trichlorobenzenes(TCBs),by the adapted microorganisms in an activated soil.The degradation and volatilization of TCBs in TLPS and in a single water system were compared.The results showed that due to volatilization losses of TCBs,the mass balance of TCBs in a single water system was very low.In contrast,using TLPS could effectively inhibit the volatilization losses of TCBs and achieved a very good mass balance during the biodegradation process.Meanwhile,the TLPS could increase microbial activity and microbial growth during the degradation process.With TLPS,the TCB degradation was in descending order of 1,2,4-TCB> 1,2,3-TCB>> 1,3,5-TCB,which was related to the exposed concentration of the contaminants in soil.This study showed that TLPS could be employed as an effective tool to evaluate the biodegradation of volatile hydrophobic organic compounds,which could not be achieved with the traditional single water system.展开更多
A two-liquid-phase (TLP) soil slurry system was employed to quantify the efficiencies of autoclaving and mercuric chloride sterilization in the dissipation of polycyclic aromatic hydrocaxbons (PAHs). The fates of ...A two-liquid-phase (TLP) soil slurry system was employed to quantify the efficiencies of autoclaving and mercuric chloride sterilization in the dissipation of polycyclic aromatic hydrocaxbons (PAHs). The fates of 11 PAHs (naphthalene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a, h)anthracene) were recorded over 113 days of incubation. No microorganisms were detected in the HgC12-sterilized soil slurries during the whole incubation period, indicating very effective sterilization. However, about 2% 36% losses of PAHs were observed in the HgCl2- sterilized slurry. In contrast to the HgCl2-sterilized soil slurry, some microorganisms survived in the autoclaved soil slurries. Moreover, significant biodegradiation of 6 PAHs (naphthalene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene) was observed in the autoclaved soil slurries. This indicated that biodegradation results of PAHs in the soil slurries, calculated on basis of the autoclaved control, would be underestimated. It could be concluded that the sterilization efficiency and effectiveness of HgCl2 on soil slurry was much higher than those of autoclaving at 121 ℃ for 45 rain.展开更多
基金Project supported by the Outstanding Young Scholar Fund and Innovative Research Group of the National Natural Science Foundation of China (No. 40325001, 40621001)the National Basic Research and Development Program of China (No. 2002CB410805) the Natural Science Foundation of Jiangsu Province (No. BK2005220).
文摘A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD+DDE)/DDT in soils under three land usages were: paddy field 〉 tree land 〉 fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD+DDE)/DDT 〉1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.
基金Supported by the National High Technology Research and Development Program of China (No. 2009AA063103)the National Natural Science Foundation of China (No. 41030531)
文摘Problems associated with organochlorine pesticide (OCP)-contaminated sites in China have received wide attention. To solve such problems, innovative ex-situ methods of site remediation are urgently needed. We investigated the feasibility of the extraction method with different organic solvents, ethanol, 1-propanol, and three fractions of petroleum ether, using a soil collected from Wujiang (W J), China, a region with long-term contamination of dichlorodiphenyltrichloroethanes (DDTs). We evaluated different influential factors, including organic solvent concentration, washing time, mixing speed, solutiomto-soil ratio, and washing temperature, on the removal of DDTs from the WJ soil. A set of relatively better parameters were selected for extraction with 100 mL L-1 petroleum ether (60-90 ℃): washing time of 180 min, mixing speed of 100 r min-I, solution-to-soil ratio of 10:1, and washing temperature of 50 ℃. These selected parameters were also applied on three other seriously OCP-polluted soils. Results demonstrated their broad-spectrum effectiveness and excellent OCP extraction performance on the contaminated soils with different characteristics.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-EW-QN403)the National Natural Science Foundation of China (Nos. 41030531,4092106,and 20707028)the Jiangsu Provincial Natural Science Foundation of China (No. BK2010608)
文摘Inoculating soil with an adapted microbial community is a more effective bioaugmentation approach than inoculation with pure strains in bioremediation.However,information on the potential of different inocula from sites with varying contamination levels and pollution histories in soil remediation is lacking.The objective of the study was to investigate the potential of adapted microorganisms in soil inocula,with different contamination levels and pollution histories,to degrade 1,2,4-trichlorobenzene (1,2,4-TCB).Three different soils from chlorobenzene-contaminated sites were inoculated into agricultural soils and soil suspension cultures spiked with 1,2,4-TCB.The results showed that 36.52% of the initially applied 1,2,4-TCB was present in the non-inoculated soil,whereas about 19.00% of 1,2,4-TCB was present in the agricultural soils inoculated with contaminated soils after 28 days of incubation.The soils inoculated with adapted microbial biomass (in the soil inocula) showed higher respiration and lower 1,2,4-TCB volatilization than the non-inoculated soils,suggesting the existence of 1,2,4-TCB adapted degraders in the contaminated soils used for inoculation.It was further confirmed in the contaminated soil suspension cultures that the concentration of inorganic chloride ions increased continuously over the entire experimental period.Higher contamination of the inocula led not only to higher degradation potential but also to higher residue formation.However,even inocula of low-level contamination were effective in enhancing the degradation of 1,2,4-TCB.Therefore,applying adapted microorganisms in the form of soil inocula,especially with lower contamination levels,could be an effective and environment-friendly strategy for soil remediation.
基金supported by the Specific Fund for Agro-Scientific Research in the Public Interest of China(No.201203045)the National Basic Research Program(973 Program)of China(No.2014CB441105)+1 种基金the National Natural Science Foundation of China (Nos.41301240 and 21277148)the Jiangsu Provincial Natural Science Foundation of China(No.BK20131049)
文摘Due to easy volatilization of volatile organic compounds from water,it is difficult to monitor their aerobic biodegradation in the traditional single water system.Whether a two-liquid-phase system(TLPS) could overcome this obstacle and enhance the degradation of volatile contaminants? In this study,a TLPS composed of silicone oil and water was employed to investigate the biodegradation of volatile compounds,trichlorobenzenes(TCBs),by the adapted microorganisms in an activated soil.The degradation and volatilization of TCBs in TLPS and in a single water system were compared.The results showed that due to volatilization losses of TCBs,the mass balance of TCBs in a single water system was very low.In contrast,using TLPS could effectively inhibit the volatilization losses of TCBs and achieved a very good mass balance during the biodegradation process.Meanwhile,the TLPS could increase microbial activity and microbial growth during the degradation process.With TLPS,the TCB degradation was in descending order of 1,2,4-TCB> 1,2,3-TCB>> 1,3,5-TCB,which was related to the exposed concentration of the contaminants in soil.This study showed that TLPS could be employed as an effective tool to evaluate the biodegradation of volatile hydrophobic organic compounds,which could not be achieved with the traditional single water system.
基金Supported by the National High Technology Research and Development Program (863 Program) of China (No. 2007AA061101)the National Natural Science Foundation of China (Nos. 20707028,4092106,40771104 and 40701078)
文摘A two-liquid-phase (TLP) soil slurry system was employed to quantify the efficiencies of autoclaving and mercuric chloride sterilization in the dissipation of polycyclic aromatic hydrocaxbons (PAHs). The fates of 11 PAHs (naphthalene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a, h)anthracene) were recorded over 113 days of incubation. No microorganisms were detected in the HgC12-sterilized soil slurries during the whole incubation period, indicating very effective sterilization. However, about 2% 36% losses of PAHs were observed in the HgCl2- sterilized slurry. In contrast to the HgCl2-sterilized soil slurry, some microorganisms survived in the autoclaved soil slurries. Moreover, significant biodegradiation of 6 PAHs (naphthalene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene) was observed in the autoclaved soil slurries. This indicated that biodegradation results of PAHs in the soil slurries, calculated on basis of the autoclaved control, would be underestimated. It could be concluded that the sterilization efficiency and effectiveness of HgCl2 on soil slurry was much higher than those of autoclaving at 121 ℃ for 45 rain.