Nimonic 80A is a nickel-chromium alloy which is strengthened by additions of titanium and aluminium. The alloy is used for high temperature, high strength applications. Wire shaped Nimonic 80A samples are resistively ...Nimonic 80A is a nickel-chromium alloy which is strengthened by additions of titanium and aluminium. The alloy is used for high temperature, high strength applications. Wire shaped Nimonic 80A samples are resistively volume heated as part of a fast capacitor discharge circuit. Time resolved measurements with sub-μs resolution of current through the specimen are performed with a Pearson probe, voltage drop across the specimen is measured with knife-edge contacts and ohmic voltage dividers and the radiance temperature of the sample with a pyrometer. These measurements allow to determine heat of fusion as well as heat capacity and electrical resistivity at initial geometry of Nimonic 80A as a function of temperature in the solid and in the liquid phase up to 2400 K.展开更多
In a previous paper it was shown that the normal spectral emissivity at 684.5 nm of a binary alloy can be lower than that of the pure constituent components. For the actual probes it was found that the observed values...In a previous paper it was shown that the normal spectral emissivity at 684.5 nm of a binary alloy can be lower than that of the pure constituent components. For the actual probes it was found that the observed values of normal spectral emissivity of the alloys are in between or higher than those of the pure constituent components. Experiments were conducted on the alloy systems Ni-Ti and Au-Ni. Their emissivity as well as electrical resistivity and enthalpy as a function of temperature is presented.展开更多
基金This work was financially supported by the Austrian "Forschungsfrderungsgesellschaft mbH", Krntner Strasse 21-23, 1010 Vienna, under contract No. 810999.
文摘Nimonic 80A is a nickel-chromium alloy which is strengthened by additions of titanium and aluminium. The alloy is used for high temperature, high strength applications. Wire shaped Nimonic 80A samples are resistively volume heated as part of a fast capacitor discharge circuit. Time resolved measurements with sub-μs resolution of current through the specimen are performed with a Pearson probe, voltage drop across the specimen is measured with knife-edge contacts and ohmic voltage dividers and the radiance temperature of the sample with a pyrometer. These measurements allow to determine heat of fusion as well as heat capacity and electrical resistivity at initial geometry of Nimonic 80A as a function of temperature in the solid and in the liquid phase up to 2400 K.
基金This work is financially supported by the "Austrian Science Fund - FWF", Sensengasse 1, 1090 Vienna, under contract No. P15055
文摘In a previous paper it was shown that the normal spectral emissivity at 684.5 nm of a binary alloy can be lower than that of the pure constituent components. For the actual probes it was found that the observed values of normal spectral emissivity of the alloys are in between or higher than those of the pure constituent components. Experiments were conducted on the alloy systems Ni-Ti and Au-Ni. Their emissivity as well as electrical resistivity and enthalpy as a function of temperature is presented.