期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mechanical responses of anchoring structure under triaxial cyclic loading 被引量:3
1
作者 Peng Wang Nong Zhang +5 位作者 Qun Wei Xingliang Xu Guangzhen Cui aoran li Sen Yang Jiaguang Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期545-560,共16页
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves... Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification. 展开更多
关键词 Triaxial stress Dynamic-static combination load Cyclic loading Anchoring structure(AS) Cumulative damage
在线阅读 下载PDF
Accumulated damage failure mechanism of anchoring structures under cyclic impact disturbance
2
作者 Peng Wang Nong Zhang +7 位作者 Jiaguang Kan Qun Wei Zhengzheng Xie aoran li Zhe He Jinghua Qi Xingliang Xu Changrui Duan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第12期1693-1709,共17页
Cyclic impact induces ongoing fatigue damage and performance degradation in anchoring structures,ser-ving as a critical factor leading to the instability of deep roadways.This paper takes the intrinsic spatio-temporal... Cyclic impact induces ongoing fatigue damage and performance degradation in anchoring structures,ser-ving as a critical factor leading to the instability of deep roadways.This paper takes the intrinsic spatio-temporal relationship of macro-microscopic cumulative damage in anchoring structures as the main thread,revealing the mechanism of bearing capacity degradation and progressive instability of anchoring structure under cyclic impact.Firstly,a set of impact test devices and methods for the prestressed solid anchor bolt anchoring structure were developed,effectively replicating the cyclic impact stress paths in situ.Secondly,cyclic impact anchoring structure tests and simulations were conducted,which clarifies the damage evolution mechanism of the anchoring structure.Prestress loss follows a cubic decay func-tion as the number of impacts increases.Under the same impact energy and pretension force,the impact resistance cycles of extended anchoring and full-length anchoring were increased by 186.7%and 280%,respectively,compared to end anchoring.The rate of internal damage accumulation is positively corre-lated with impact energy and negatively correlated with anchorage length.Internal tensile cracks account for approximately 85%.Stress transmission follows a fluctuating pattern.Compared to the extended anchoring,the maximum vibration velocity of the exposed end particles in the full-length anchoring was reduced by 59.31%.Damage evolution exhibits a pronounced cumulative mutation effect.Then,a three-media,two-interface mechanical model of the anchoring structure was constructed.It has been clarified that the compressive stress,tensile stress,and oscillation effect arising from rapid transi-tions between compression and tension are the primary internal factors responsible for the degradation of the anchoring structure’s bearing capacity.Finally,the progressive instability mechanism of the anchoring structure under cyclic impact was elucidated.The mutual feedback and superposition of media rupture,interface debonding,and bearing capacity degradation result in overall failure.The failure pro-cess involves stages dominated by oscillation-compression,tensile stress,and compression failure.A tar-geted control strategy was further proposed.This provides a reference for maintaining the long-term stability of deep roadways under dynamic impact loads. 展开更多
关键词 Cyclic impact Anchoring structure Cumulative damage Bearing capacity degradation Progressive instability
在线阅读 下载PDF
An Improved Distributed Query for Large-Scale RDF Data
3
作者 aoran li Xinmeng Wang +1 位作者 Xueliang Wang Bohan li 《Journal on Big Data》 2020年第4期157-166,共10页
The rigid structure of the traditional relational database leads to data redundancy,which seriously affects the efficiency of the data query and cannot effectively manage massive data.To solve this problem,we use dist... The rigid structure of the traditional relational database leads to data redundancy,which seriously affects the efficiency of the data query and cannot effectively manage massive data.To solve this problem,we use distributed storage and parallel computing technology to query RDF data.In order to achieve efficient storage and retrieval of large-scale RDF data,we combine the respective advantage of the storage model of the relational database and the distributed query.To overcome the disadvantages of storing and querying RDF data,we design and implement a breadth-first path search algorithm based on the keyword query on a distributed platform.We conduct the LUBM query statements respectively with the selected data sets.In experiments,we compare query response time in different conditions to evaluate the feasibility and correctness of our approaches.The results show that the proposed scheme can reduce the storage cost and improve query efficiency. 展开更多
关键词 RDF distributed query HBASE query optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部