Peripheral nerves act like networks of “wires” that conduct signals from the brain and spinal cord to organs throughout the body. Damage to these nerves leads to numbness, pain, and weakness that eventually reduces ...Peripheral nerves act like networks of “wires” that conduct signals from the brain and spinal cord to organs throughout the body. Damage to these nerves leads to numbness, pain, and weakness that eventually reduces the patient’s quality of life. Fortunately, peripheral nerves have a high regenerative capacity and, in most cases, recover from mild disorders and injuries. However, there have been continuous challenges facing the development of treatments for peripheral nerve conditions such as disorders that occur through chronic mechanical stimulation like carpal tunnel syndrome, disorders due to side effects from drugs and intractable diseases like chronic inflammatory demyelinating polyneuropathy.展开更多
In this work, we consider device-to-device (D2D) direct communication underlaying a 3GPP LTE-A network. D2D communication enables new service opportunities, provides high throughput and reliable communication while re...In this work, we consider device-to-device (D2D) direct communication underlaying a 3GPP LTE-A network. D2D communication enables new service opportunities, provides high throughput and reliable communication while reducing the base station load. For better total performance, D2D links and cellular links share the same radio resource and the management of interference becomes a crucial task. We propose a radio resource allocation for D2D links based on interference avoidance approach. For system with multiple transmit antennas, we apply beamforming technique based on signal to leakage criterion to reduce the co-channel interference. The results show that, D2D transmission with the resource allocation and beamforming technique provides significant gain compared to that of the regular cellular network.展开更多
In order to develop melanoma-targeted in situ peptide vaccine immunotherapy, magnetite nanoparticles were conjugated with a melanogenesis substrate, N-propionyl cysteaminylphenol (NPrCAP). Magnetite nanoparticles intr...In order to develop melanoma-targeted in situ peptide vaccine immunotherapy, magnetite nanoparticles were conjugated with a melanogenesis substrate, N-propionyl cysteaminylphenol (NPrCAP). Magnetite nanoparticles introduced thermotherapy which caused non-apoptotic cell death and generation of heat shock protein (HSP) upon exposure to alternating magnetic field (AMF). NPrCAP was expected to develop a melanoma-targeted therapeutic drug because of its selective incorporation into melanoma cells and production of highly reactive free radicals, that result in not only oxidative stress but also apoptotic cell death by reacting with tyrosinase.展开更多
Background: Acne vulgaris is characterized by the enhancement of sebaceous lipogenesis and sebum secretion, and apart from retinoids and some natural products there are few effective antiacne agents that directly supp...Background: Acne vulgaris is characterized by the enhancement of sebaceous lipogenesis and sebum secretion, and apart from retinoids and some natural products there are few effective antiacne agents that directly suppress sebum production and accumulation in sebaceous glands. Objective: We examined the effects of β-cryptoxanthin (β-CRX), which is a carotenoid pigment most abundant in Citrus unshiu Marcovich (Satsuma mandarin orange) and plays a role as a vitamin A precursor on sebum production and accumulation in hamster sebaceous gland cells (sebocytes). Materials and methods: The regulation of sebum production was examined by the measurement of triacylglycerols (TGs), the major sebum component, and oil red O staining in insulindifferentiated hamster sebocytes. The expression of diacylglycerol acyltransferase-1 (DGAT-1), a rate-limiting enzyme of TG biosynthesis, and perilipin 1 (PLIN1), a lipid storage droplet protein, was analyzed using real-time PCR and Western blotting. Results: Hamster sebocytes constitutively produced TGs during cultivation and the production of TGs was enhanced by insulin treatment. Both constitutive and insulin-enhanced TG productions were dose- and time-dependently inhibited by β-CRX as well as 13-cis retinoic acid. In addition, the gene expression of DGAT-1 was suppressed by β-CRX in the sebocytes. Furthermore, the insulin-en- hanced sebum accumulation as lipid droplets was reduced in the β-CRX-treated cells. Moreover, β-CRX was found to suppress the gene expression and production of PLIN1 in insulin-differentiated hamster sebocytes. Conclusions: These results provide novel evidence that β-CRX is an effective candidate for acne therapy by its ability to exert dual inhibitory actions against DGAT-1-dependent TG production and PLIN1-mediated lipiddroplet formation in hamster sebocytes.展开更多
Globally,cestode zoonoses cause serious public health problems,particularly in Asia.Among all neglected zoonotic diseases,cestode zoonoses account for over 75%of global disability adjusted life years(DALYs)lost.An int...Globally,cestode zoonoses cause serious public health problems,particularly in Asia.Among all neglected zoonotic diseases,cestode zoonoses account for over 75%of global disability adjusted life years(DALYs)lost.An international symposium on cestode zoonoses research and control was held in Shanghai,China between 28th and 30th October 2012 in order to establish joint efforts to study and research effective approaches to control these zoonoses.It brought together 96 scientists from the Asian region and beyond to exchange ideas,report on progress,make a gap analysis,and distill prioritizing settings with a focus on the Asian region.Key objectives of this international symposium were to agree on solutions to accelerate progress towards decreasing transmission,and human mortality and morbidity caused by the three major cestode zoonoses(cystic echinococcosis,alveolar echinococcosis,and cysticercosis);to critically assess the potential to control these diseases;to establish a research and validation agenda on existing and new approaches;and to report on novel tools for the study and control of cestode zoonoses.展开更多
Ladder climbing is a relatively new but practical locomotion style for robots. Unfortunately, due to their size and weight, ladder climbing by human-sized robots developed so far is struggling with the speedup of ladd...Ladder climbing is a relatively new but practical locomotion style for robots. Unfortunately, due to their size and weight, ladder climbing by human-sized robots developed so far is struggling with the speedup of ladder climbing motion itself. Therefore, in this paper, a new ladder climbing gait for the robot WAREC-1R is proposed by the authors, which is both faster than the former ones and stable. However, to realize such a gait, a point that has to be taken into consideration is the deformation caused by the self-weight of the robot. To deal with this issue, extra hardware (sensor) and software (position and force control) systems and extra time for sensing and calculation were required. For a complete solution without any complicated systems and time only for deformation compensation, limb stiffness improvement plan by the minimal design change of mechanical parts of the robot is also proposed by the authors, with a thorough study about deformation distribution in the robot. With redesigned parts, ladder climbing experiments by WAREC-1R proved that both the new ladder climbing gait and the limb stiffness improvement are successful, and the reduced deformation is very close to the estimated value as well.展开更多
基金supported by Japan Society for the Promotion of Science(JSPS)KAKENHI(JP17K13052,JP18H03129,and JP18K19739)
文摘Peripheral nerves act like networks of “wires” that conduct signals from the brain and spinal cord to organs throughout the body. Damage to these nerves leads to numbness, pain, and weakness that eventually reduces the patient’s quality of life. Fortunately, peripheral nerves have a high regenerative capacity and, in most cases, recover from mild disorders and injuries. However, there have been continuous challenges facing the development of treatments for peripheral nerve conditions such as disorders that occur through chronic mechanical stimulation like carpal tunnel syndrome, disorders due to side effects from drugs and intractable diseases like chronic inflammatory demyelinating polyneuropathy.
文摘In this work, we consider device-to-device (D2D) direct communication underlaying a 3GPP LTE-A network. D2D communication enables new service opportunities, provides high throughput and reliable communication while reducing the base station load. For better total performance, D2D links and cellular links share the same radio resource and the management of interference becomes a crucial task. We propose a radio resource allocation for D2D links based on interference avoidance approach. For system with multiple transmit antennas, we apply beamforming technique based on signal to leakage criterion to reduce the co-channel interference. The results show that, D2D transmission with the resource allocation and beamforming technique provides significant gain compared to that of the regular cellular network.
文摘In order to develop melanoma-targeted in situ peptide vaccine immunotherapy, magnetite nanoparticles were conjugated with a melanogenesis substrate, N-propionyl cysteaminylphenol (NPrCAP). Magnetite nanoparticles introduced thermotherapy which caused non-apoptotic cell death and generation of heat shock protein (HSP) upon exposure to alternating magnetic field (AMF). NPrCAP was expected to develop a melanoma-targeted therapeutic drug because of its selective incorporation into melanoma cells and production of highly reactive free radicals, that result in not only oxidative stress but also apoptotic cell death by reacting with tyrosinase.
文摘Background: Acne vulgaris is characterized by the enhancement of sebaceous lipogenesis and sebum secretion, and apart from retinoids and some natural products there are few effective antiacne agents that directly suppress sebum production and accumulation in sebaceous glands. Objective: We examined the effects of β-cryptoxanthin (β-CRX), which is a carotenoid pigment most abundant in Citrus unshiu Marcovich (Satsuma mandarin orange) and plays a role as a vitamin A precursor on sebum production and accumulation in hamster sebaceous gland cells (sebocytes). Materials and methods: The regulation of sebum production was examined by the measurement of triacylglycerols (TGs), the major sebum component, and oil red O staining in insulindifferentiated hamster sebocytes. The expression of diacylglycerol acyltransferase-1 (DGAT-1), a rate-limiting enzyme of TG biosynthesis, and perilipin 1 (PLIN1), a lipid storage droplet protein, was analyzed using real-time PCR and Western blotting. Results: Hamster sebocytes constitutively produced TGs during cultivation and the production of TGs was enhanced by insulin treatment. Both constitutive and insulin-enhanced TG productions were dose- and time-dependently inhibited by β-CRX as well as 13-cis retinoic acid. In addition, the gene expression of DGAT-1 was suppressed by β-CRX in the sebocytes. Furthermore, the insulin-en- hanced sebum accumulation as lipid droplets was reduced in the β-CRX-treated cells. Moreover, β-CRX was found to suppress the gene expression and production of PLIN1 in insulin-differentiated hamster sebocytes. Conclusions: These results provide novel evidence that β-CRX is an effective candidate for acne therapy by its ability to exert dual inhibitory actions against DGAT-1-dependent TG production and PLIN1-mediated lipiddroplet formation in hamster sebocytes.
基金This international symposium was supported by the Chinese Ministry of Healththe National Institute of Parasitic Diseases,Chinese Center for Disease Control and Preventionthe Asian Science and Technology Strategic Cooperation Promotion Programs sponsored by the special Coordination Funds for Promotion Science and Technology,MEXT for three years(2010–2012)to Akira Ito.
文摘Globally,cestode zoonoses cause serious public health problems,particularly in Asia.Among all neglected zoonotic diseases,cestode zoonoses account for over 75%of global disability adjusted life years(DALYs)lost.An international symposium on cestode zoonoses research and control was held in Shanghai,China between 28th and 30th October 2012 in order to establish joint efforts to study and research effective approaches to control these zoonoses.It brought together 96 scientists from the Asian region and beyond to exchange ideas,report on progress,make a gap analysis,and distill prioritizing settings with a focus on the Asian region.Key objectives of this international symposium were to agree on solutions to accelerate progress towards decreasing transmission,and human mortality and morbidity caused by the three major cestode zoonoses(cystic echinococcosis,alveolar echinococcosis,and cysticercosis);to critically assess the potential to control these diseases;to establish a research and validation agenda on existing and new approaches;and to report on novel tools for the study and control of cestode zoonoses.
文摘Ladder climbing is a relatively new but practical locomotion style for robots. Unfortunately, due to their size and weight, ladder climbing by human-sized robots developed so far is struggling with the speedup of ladder climbing motion itself. Therefore, in this paper, a new ladder climbing gait for the robot WAREC-1R is proposed by the authors, which is both faster than the former ones and stable. However, to realize such a gait, a point that has to be taken into consideration is the deformation caused by the self-weight of the robot. To deal with this issue, extra hardware (sensor) and software (position and force control) systems and extra time for sensing and calculation were required. For a complete solution without any complicated systems and time only for deformation compensation, limb stiffness improvement plan by the minimal design change of mechanical parts of the robot is also proposed by the authors, with a thorough study about deformation distribution in the robot. With redesigned parts, ladder climbing experiments by WAREC-1R proved that both the new ladder climbing gait and the limb stiffness improvement are successful, and the reduced deformation is very close to the estimated value as well.