期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Intelligently Tuned Wavelet Parameters for GPS/INS Error Estimation 被引量:3
1
作者 ahmed mudheher hasan Khairulmizam Samsudin Abd Rahman Ramli 《International Journal of Automation and computing》 EI 2011年第4期411-420,共10页
This paper presents a new algorithm for de-noising global positioning system (GPS) and inertial navigation system (INS) data and estimates the INS error using wavelet multi-resolution analysis algorithm (WMRA)-b... This paper presents a new algorithm for de-noising global positioning system (GPS) and inertial navigation system (INS) data and estimates the INS error using wavelet multi-resolution analysis algorithm (WMRA)-based genetic algorithm (GA) with a well-designed structure appropriate for practical and real time implementations because of its very short training time and elevated accuracy. Different techniques have been implemented to de-noise and estimate the INS and GPS errors. Wavelet de-noising is one of the most exploited techniques that have been recently used to increase the precision and reliability of the integrated GPS/INS navigation system. To ameliorate the WMRA algorithm, GA was exploited to optimize the wavelet parameters so as to determine the best wavelet filter, thresholding selection rule (TSR), and the optimum level of decomposition (LOD). This results in increasing the robustness of the WMRA algorithm to estimate the INS error. The proposed intelligent technique has overcome the drawbacks of the tedious selection for WMRA algorithm parameters. Finally, the proposed method improved the stability and reliability of the estimated INS error using real field test data. 展开更多
关键词 Global positioning system (GPS) inertial navigation system (INS) wavelet multi-resolution analysis (WMRA) genetic algorithm (GA) inertial measurement unit (IMU) level of decomposition (LOD) threshold selection rule (TSR).
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部