The heterogeneity ofα-Al(Fe,Mn)Si dispersoids andβ″precipitates was tuned to enhance the strength−ductility synergy of air-cooled Al−Mg−Si alloys.Scanning electron microscopy(SEM)and transmission electron microscop...The heterogeneity ofα-Al(Fe,Mn)Si dispersoids andβ″precipitates was tuned to enhance the strength−ductility synergy of air-cooled Al−Mg−Si alloys.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)were employed to elucidate the microstructural parameters of these two strengthening phases.The results show that the microstructural heterogeneity can be triggered by the absence of homogenization,resulting in the presence of dispersoid-free zones(DFZs)and dispersoid zones(DZs),in conjunction with bimodalβ″precipitates.Further analytical calculations,from the strengthening model,clarify that the strategically dispersedα-Al(Fe,Mn)Si andβ″particles create“soft”and“hard”domains within the alloy,resultantly improving the mechanical properties.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52301025,52371065,52301179)the Fundamental Research Program of Shanxi Province,China(Nos.202203021222039,202203021212124)。
文摘The heterogeneity ofα-Al(Fe,Mn)Si dispersoids andβ″precipitates was tuned to enhance the strength−ductility synergy of air-cooled Al−Mg−Si alloys.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)were employed to elucidate the microstructural parameters of these two strengthening phases.The results show that the microstructural heterogeneity can be triggered by the absence of homogenization,resulting in the presence of dispersoid-free zones(DFZs)and dispersoid zones(DZs),in conjunction with bimodalβ″precipitates.Further analytical calculations,from the strengthening model,clarify that the strategically dispersedα-Al(Fe,Mn)Si andβ″particles create“soft”and“hard”domains within the alloy,resultantly improving the mechanical properties.