Mechanism functions and kinetic parameters of AlOOH(boehmite or diaspore) dissolving in sodium hydroxide solution were researched.The mixture of boehmite or diaspore and caustic solution was scanned by high-pressure...Mechanism functions and kinetic parameters of AlOOH(boehmite or diaspore) dissolving in sodium hydroxide solution were researched.The mixture of boehmite or diaspore and caustic solution was scanned by high-pressure differential scanning calorimetry(DSC) instrument with heating rate of 10 ℃/min,and differential equation method was used to analyse the DSC curves,combining with iterative method and linear least square method.The most probable mechanism functions for both boehmite or diaspore and caustic solution reactions were logically selected from 30 types of non-isothermal kinetics differential equations,according to the calculated results obtained by Matlab program.The most probable differential mechanism function of boehmite dissolving in caustic solution is f(α)=1-α,which reveals the first-order reaction with apparent activation energy of 79.178 kJ/mol and the preexponential constant 1.031×108 s-1.The function,f(α)=2(1-α)3/2,can describe the dissolution of diaspore sample in sodium hydroxide solution.The calculated results of kinetic parameters are apparent activation energy of 73.858 kJ/mol,preexponential constant of 5.752×107 s-1 and reaction order of 1.5.展开更多
CeB6 powders were prepared by high-temperature self-propagating synthesis (SHS) in which CeO2, B203 and Mg were taken as reactants. The adiabatic temperature and dynamics of SHS reactions were investigated. The SHS ...CeB6 powders were prepared by high-temperature self-propagating synthesis (SHS) in which CeO2, B203 and Mg were taken as reactants. The adiabatic temperature and dynamics of SHS reactions were investigated. The SHS reaction products and leached products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the adiabatic temperature of Mg-B2Oa-CeO2 reaction system was rather higher than 1800 K to make the reaction propagate by itself, and the apparent activation energy (Ea) and reaction order (n) of exothermic peak on Mg-BzO3-CeO2 differential scanning calorimetry (DSC) curve were 23.03 kJ/mol and 1.31, respectively. The apparent activation energy was lower, so the reaction occurred easily. The SHS products consisted of MgO, CeB6 and little MgaB2O6. The leached products consisted of single CeB6 phase and its purity was higher than 99.0%, and the average particle sizes of CeB6 were smaller than 150 nm.展开更多
High temperature self-propagating synthesis (SHS) process is very rapid, the reaction process becomes un-controlled after the SHS reaction is ignited. So the initial reaction conditions will have great effects on ph...High temperature self-propagating synthesis (SHS) process is very rapid, the reaction process becomes un-controlled after the SHS reaction is ignited. So the initial reaction conditions will have great effects on phase compositions and microstructures of reaction products. In this paper, the effects of the proportioning amount of Mg on the yield ratio and particle sizes of CeB6 were studied. The SHS reaction products and leached products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the SHS products consisted of MgO, CeB6 and little Mg3B206. The single CeB6 phase was contained after the SHS reaction products were leached. The purity of CeB6 was higher than 99.0 mass%, and the minimum particle sizes of CeB6 were within 30-70 nm. When the propor- tioning amount of Mg was 25% more than the theoretic amount, the yield of CeB6 was 68.68%. The antioxidant ability of CeB6 was rather stronger, which was oxidized step by step, and the initial oxidation temperature was 750 ℃ which indicated that it had good high temperature stability. The apparent activation energies of oxidation reactions of CeB6 were 200.09 and 312.10 kJ/mol, respectively, and reaction orders were 0.69 and 0.40, respectively.展开更多
基金Project(2007BC13504)supported by the National Basic Research Program of ChinaProject(20050145029)supported by Research Fund for the Doctoral Program of Higher EducationProject(2005221012)supported by the Science and Technology Talents Fund for Excellent Youth of Liaoning Province,China
文摘Mechanism functions and kinetic parameters of AlOOH(boehmite or diaspore) dissolving in sodium hydroxide solution were researched.The mixture of boehmite or diaspore and caustic solution was scanned by high-pressure differential scanning calorimetry(DSC) instrument with heating rate of 10 ℃/min,and differential equation method was used to analyse the DSC curves,combining with iterative method and linear least square method.The most probable mechanism functions for both boehmite or diaspore and caustic solution reactions were logically selected from 30 types of non-isothermal kinetics differential equations,according to the calculated results obtained by Matlab program.The most probable differential mechanism function of boehmite dissolving in caustic solution is f(α)=1-α,which reveals the first-order reaction with apparent activation energy of 79.178 kJ/mol and the preexponential constant 1.031×108 s-1.The function,f(α)=2(1-α)3/2,can describe the dissolution of diaspore sample in sodium hydroxide solution.The calculated results of kinetic parameters are apparent activation energy of 73.858 kJ/mol,preexponential constant of 5.752×107 s-1 and reaction order of 1.5.
基金supported by National Natural Science Foundation of China(51002025,50644016,50874027)
文摘CeB6 powders were prepared by high-temperature self-propagating synthesis (SHS) in which CeO2, B203 and Mg were taken as reactants. The adiabatic temperature and dynamics of SHS reactions were investigated. The SHS reaction products and leached products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the adiabatic temperature of Mg-B2Oa-CeO2 reaction system was rather higher than 1800 K to make the reaction propagate by itself, and the apparent activation energy (Ea) and reaction order (n) of exothermic peak on Mg-BzO3-CeO2 differential scanning calorimetry (DSC) curve were 23.03 kJ/mol and 1.31, respectively. The apparent activation energy was lower, so the reaction occurred easily. The SHS products consisted of MgO, CeB6 and little MgaB2O6. The leached products consisted of single CeB6 phase and its purity was higher than 99.0%, and the average particle sizes of CeB6 were smaller than 150 nm.
基金supported by National Natural Science Foundation of China (51002025)National High Technology Research and Development Program of China(863 Program) (2010AA03A405)National Science and Technology Support Plan of China during the 12th Five-Year Plan (2012BAE01B02)
文摘High temperature self-propagating synthesis (SHS) process is very rapid, the reaction process becomes un-controlled after the SHS reaction is ignited. So the initial reaction conditions will have great effects on phase compositions and microstructures of reaction products. In this paper, the effects of the proportioning amount of Mg on the yield ratio and particle sizes of CeB6 were studied. The SHS reaction products and leached products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the SHS products consisted of MgO, CeB6 and little Mg3B206. The single CeB6 phase was contained after the SHS reaction products were leached. The purity of CeB6 was higher than 99.0 mass%, and the minimum particle sizes of CeB6 were within 30-70 nm. When the propor- tioning amount of Mg was 25% more than the theoretic amount, the yield of CeB6 was 68.68%. The antioxidant ability of CeB6 was rather stronger, which was oxidized step by step, and the initial oxidation temperature was 750 ℃ which indicated that it had good high temperature stability. The apparent activation energies of oxidation reactions of CeB6 were 200.09 and 312.10 kJ/mol, respectively, and reaction orders were 0.69 and 0.40, respectively.