期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多分区时空图卷积网络的骨骼动作识别 被引量:4
1
作者 辛华磊 丁英强 +1 位作者 高猛 陈恩庆 《信号处理》 CSCD 北大核心 2022年第2期241-249,共9页
人体骨骼点数据相对于RGB视频数据具有更好的环境适应性和动作表达能力,因此基于骨骼点数据的动作识别算法得到越来越广泛的关注和研究。近年来,基于图卷积网络(GCN)的骨骼点动作识别模型表现出了很好的性能,但多数基于GCN的模型往往使... 人体骨骼点数据相对于RGB视频数据具有更好的环境适应性和动作表达能力,因此基于骨骼点数据的动作识别算法得到越来越广泛的关注和研究。近年来,基于图卷积网络(GCN)的骨骼点动作识别模型表现出了很好的性能,但多数基于GCN的模型往往使用固定空间配置分区策略且手动设定各骨骼点之间的连接关系,无法更好适应不同动作的变化特征。针对此问题,本文提出多配置分区的自适应时空图卷积网络用于骨骼点动作识别,通过搜索更合理的配置分区个数并自适应获取关节点连接关系实现对骨骼点动作特征更充分地利用。在NTU-RGBD数据集和Kinetics-Skeleton数据集上的实验表明本文所提方法可获得比目前多数文献更高的动作识别精度。 展开更多
关键词 动作识别 图卷积网络 自适应 多分区
在线阅读 下载PDF
基于时空多残差图卷积的3D骨骼点动作识别 被引量:1
2
作者 高猛 丁英强 +1 位作者 辛华磊 陈恩庆 《小型微型计算机系统》 CSCD 北大核心 2022年第12期2570-2574,共5页
近年来,随着人机交互和智能监控需求的增加,基于骨骼点的人体动作识别方法获得越来越广泛的研究和应用.传统方法多从已知骨骼序列中提取信息,依赖手工选取的特征,并利用骨骼点之间动态变化对动作建模.现有的时空图卷积网络模型仅利用时... 近年来,随着人机交互和智能监控需求的增加,基于骨骼点的人体动作识别方法获得越来越广泛的研究和应用.传统方法多从已知骨骼序列中提取信息,依赖手工选取的特征,并利用骨骼点之间动态变化对动作建模.现有的时空图卷积网络模型仅利用时域的局部特征信息对动作识别分类,忽略了全局特征信息的作用,造成对于相似动作的判定不准确的问题.针对此问题,本文提出一种基于时空图卷积的多残差图卷积模型,利用图卷积网络获取的局部特征信息与残差卷积模块获取的全局特征信息相融合,从而提高了模型的表达能力.同时通过自适应池化的方法,减少了网络超参数的使用,增加了网络模型的泛化能力.通过在NTURGB-D、Kinetics等大型数据集上的大量实验表明,所提模型可以获得比现有时空图模型更好的识别效果. 展开更多
关键词 动作识别 时空图模型 全局特征 多残差卷积模型 信息融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部