利用传统的安时积分法估计全钒液流电池(vanadium redox flow battery,VRB)的荷电状态(state of charge,SOC),常常会因为累积误差造成估计误差增大的问题。该文针对这一问题,以一阶RC等效电路模型为基础,采用无迹卡尔曼滤波(unscen...利用传统的安时积分法估计全钒液流电池(vanadium redox flow battery,VRB)的荷电状态(state of charge,SOC),常常会因为累积误差造成估计误差增大的问题。该文针对这一问题,以一阶RC等效电路模型为基础,采用无迹卡尔曼滤波(unscented Kalman filter,UKF)算法对安时积分法估计结果进行修正,提高SOC估计精度。此外,UKF算法同时可以在收敛后准确地实时估计电池模型中的内阻,而电池的内阻可以表征其健康状态(state of health,SOH),因此UKF算法可根据内阻的估计结果评价电池的SOH。在工况下对电池进行测试性充放电实验,实验结果表明,UKF算法可以快速完成电池SOC的精确估计,绝对误差小于2%,并能准确地估计出电池的内阻,为电池SOH的确定提供参考依据。展开更多
文摘利用传统的安时积分法估计全钒液流电池(vanadium redox flow battery,VRB)的荷电状态(state of charge,SOC),常常会因为累积误差造成估计误差增大的问题。该文针对这一问题,以一阶RC等效电路模型为基础,采用无迹卡尔曼滤波(unscented Kalman filter,UKF)算法对安时积分法估计结果进行修正,提高SOC估计精度。此外,UKF算法同时可以在收敛后准确地实时估计电池模型中的内阻,而电池的内阻可以表征其健康状态(state of health,SOH),因此UKF算法可根据内阻的估计结果评价电池的SOH。在工况下对电池进行测试性充放电实验,实验结果表明,UKF算法可以快速完成电池SOC的精确估计,绝对误差小于2%,并能准确地估计出电池的内阻,为电池SOH的确定提供参考依据。
文摘对各个单电池的状态进行准确测量是判断电池系统荷电状态和健康状态的重要任务之一。设计的全钒液流电池巡检系统以ARM为控制核心,系统硬件采样模块基于LTC6804芯片,利用Lab VIEW编程实现数据的校验与显示。把该系统应用于由5个单电池组成的全钒液流电池上,进行验证性实验。实验结果表明:该系统抗干扰,测量的电压偏差在1 m V,采样周期达到0.2 s,而且能够实时显示和保存数据。