降低风电场出力波动性有利于促进电网友好运行,而尾流优化控制是降低整场出力波动的重要措施。现有尾流优化控制大都基于稳态模型,却忽略尾流动态迟延特性。但尾流迟延在风速不确定性基础上会进一步增加风电场出力的波动性。为此,该文...降低风电场出力波动性有利于促进电网友好运行,而尾流优化控制是降低整场出力波动的重要措施。现有尾流优化控制大都基于稳态模型,却忽略尾流动态迟延特性。但尾流迟延在风速不确定性基础上会进一步增加风电场出力的波动性。为此,该文基于稳态尾流模型辅以迟延计算,构建风电场准稳态尾流模型以同时兼顾尾流干涉作用与动态迟延特性。在此基础上,提出一种考虑迟延的模型预测平稳控制方法(predictive control considering delay,MPC-D),以指令跟踪与功率波动最小为目标协调各机组出力。最后,在WFSim上构建含33台机组的风电场仿真模型,并基于此分析尾流迟延对风电机组以及整场运行性能影响。结果表明,所建准稳态尾流模型能同时模拟尾流速度损失、机组功率迟延和整场功率阶梯变化等特性。并且由MPC-D所得整场出力较基于稳态模型的控制方法平均相对误差、均方根误差以及滑动均方根误差均得到改善,同时能防止机组桨距角频繁动作。展开更多
海上风电桩基的振荡对其局部冲刷的影响不容忽视。该文采用VOF(volume of fluid)两相流模型,对横纵振荡的风电桩基进行数值模拟。分析不同频率、振幅下的桩前和桩侧对称面在周期内流场分布、马蹄涡系变化和床面剪切应力,探究振荡桩基对...海上风电桩基的振荡对其局部冲刷的影响不容忽视。该文采用VOF(volume of fluid)两相流模型,对横纵振荡的风电桩基进行数值模拟。分析不同频率、振幅下的桩前和桩侧对称面在周期内流场分布、马蹄涡系变化和床面剪切应力,探究振荡桩基对局部冲刷的影响机理。研究结果表明:在振荡周期内,纵向振荡桩基桩前对称面内产生回流,在T/2时刻马蹄涡达到最大且床面剪切应力最大,不改变桩侧对称面内水流流动;横向振荡桩基会延展桩侧马蹄涡系,在T/2时刻马蹄涡最大但床面剪切应力最小,T时刻最大,不改变桩前对称面内水流流动。横向、纵向振荡会增大桩前和桩侧的床面剪切应力,加剧局部冲刷,当A=5 mm、f=2 Hz时,纵向振荡桩前对称面剪切应力较静止约增大0.75%,桩侧对称面约增大7%;横向振荡桩前对称面约增大2.5%;桩侧对称面约增大10%。展开更多
文摘降低风电场出力波动性有利于促进电网友好运行,而尾流优化控制是降低整场出力波动的重要措施。现有尾流优化控制大都基于稳态模型,却忽略尾流动态迟延特性。但尾流迟延在风速不确定性基础上会进一步增加风电场出力的波动性。为此,该文基于稳态尾流模型辅以迟延计算,构建风电场准稳态尾流模型以同时兼顾尾流干涉作用与动态迟延特性。在此基础上,提出一种考虑迟延的模型预测平稳控制方法(predictive control considering delay,MPC-D),以指令跟踪与功率波动最小为目标协调各机组出力。最后,在WFSim上构建含33台机组的风电场仿真模型,并基于此分析尾流迟延对风电机组以及整场运行性能影响。结果表明,所建准稳态尾流模型能同时模拟尾流速度损失、机组功率迟延和整场功率阶梯变化等特性。并且由MPC-D所得整场出力较基于稳态模型的控制方法平均相对误差、均方根误差以及滑动均方根误差均得到改善,同时能防止机组桨距角频繁动作。
文摘海上风电桩基的振荡对其局部冲刷的影响不容忽视。该文采用VOF(volume of fluid)两相流模型,对横纵振荡的风电桩基进行数值模拟。分析不同频率、振幅下的桩前和桩侧对称面在周期内流场分布、马蹄涡系变化和床面剪切应力,探究振荡桩基对局部冲刷的影响机理。研究结果表明:在振荡周期内,纵向振荡桩基桩前对称面内产生回流,在T/2时刻马蹄涡达到最大且床面剪切应力最大,不改变桩侧对称面内水流流动;横向振荡桩基会延展桩侧马蹄涡系,在T/2时刻马蹄涡最大但床面剪切应力最小,T时刻最大,不改变桩前对称面内水流流动。横向、纵向振荡会增大桩前和桩侧的床面剪切应力,加剧局部冲刷,当A=5 mm、f=2 Hz时,纵向振荡桩前对称面剪切应力较静止约增大0.75%,桩侧对称面约增大7%;横向振荡桩前对称面约增大2.5%;桩侧对称面约增大10%。