Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline (Co2FeA1)97.8(Al2O3)2.2 soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or ...Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline (Co2FeA1)97.8(Al2O3)2.2 soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or post anneaiing. The in-plane uniaxiai magnetic anisotropy varies from 50 Oe to 180 Oe (1 Oe=79.5775 A·m-1) by adjusting the sample's position. As a result, the ferromagnetic resonance frequency of the film increases from 1.9 GHz to 3.75 GHz.展开更多
The Co2FeSi films are deposited on Si (100) substrates by an oblique sputtering method at ambient temperature. It is revealed that the microwave ferromagnetic properties of Co2FeSi films are sensitive to sample posi...The Co2FeSi films are deposited on Si (100) substrates by an oblique sputtering method at ambient temperature. It is revealed that the microwave ferromagnetic properties of Co2FeSi films are sensitive to sample position and sputtering power. It is exciting that the as-deposited films without any magnetic annealing exhibit high in-plane uniaxial anisotropy fields in a range of 200 Oe-330 Oe (1 Oe = 79.5775 A.m ^-1), and low coercivities in a range of 5 Oe-28 Oe. As a result, high self-biased ferromagnetic resonance frequency up to 4.75 GHz is achieved in as-deposited oblique sputtered films. These results indicate that Co2FeSi Heusler alloy films are promising in practical applications of RF/microwave devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11074040)the Key Project of Shandong Provincial Department of Science and Technology,China(Grant No.ZR2012FZ006)the Fujian Provincial Science Foundation for Distinguished Young Scholars,China(Grant No.2010J06001)
文摘Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline (Co2FeA1)97.8(Al2O3)2.2 soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or post anneaiing. The in-plane uniaxiai magnetic anisotropy varies from 50 Oe to 180 Oe (1 Oe=79.5775 A·m-1) by adjusting the sample's position. As a result, the ferromagnetic resonance frequency of the film increases from 1.9 GHz to 3.75 GHz.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074040)the Key Project of Department of Science and Technology of Shangdong Province of China(Grant No.ZR2012FZ006)
文摘The Co2FeSi films are deposited on Si (100) substrates by an oblique sputtering method at ambient temperature. It is revealed that the microwave ferromagnetic properties of Co2FeSi films are sensitive to sample position and sputtering power. It is exciting that the as-deposited films without any magnetic annealing exhibit high in-plane uniaxial anisotropy fields in a range of 200 Oe-330 Oe (1 Oe = 79.5775 A.m ^-1), and low coercivities in a range of 5 Oe-28 Oe. As a result, high self-biased ferromagnetic resonance frequency up to 4.75 GHz is achieved in as-deposited oblique sputtered films. These results indicate that Co2FeSi Heusler alloy films are promising in practical applications of RF/microwave devices.