为了降低自由空间激光通信中对准难度,本文提出了采用离焦的方法以增大接收视场角。以满足通信所需最低能量(-35 d Bm)为基准,理论推导了探测器接收能量、接收视场角(FOV)、离焦接收能量及离焦量之间的相互关系,并通过Matlab仿真,分析...为了降低自由空间激光通信中对准难度,本文提出了采用离焦的方法以增大接收视场角。以满足通信所需最低能量(-35 d Bm)为基准,理论推导了探测器接收能量、接收视场角(FOV)、离焦接收能量及离焦量之间的相互关系,并通过Matlab仿真,分析对比了离焦接收能量和离焦量对接收视场角的影响。结果显示,当离焦量为0.5 mm时,离焦接收能量从-20.9 d Bm提高到-4.1 d Bm,接收视场角能增大0.27 mrad;当离焦接收能量为-4.1 d Bm时,离焦量从0.2 mm扩大到1.0 mm,视场角能增大1.75 mrad。通过对比表明,提高离焦接收能量以及扩大离焦量都可以增加接收视场角,且扩大离焦量的效果相对比较明显,这对后续离焦系统的设计提供了理论指导依据。展开更多
文摘为了降低自由空间激光通信中对准难度,本文提出了采用离焦的方法以增大接收视场角。以满足通信所需最低能量(-35 d Bm)为基准,理论推导了探测器接收能量、接收视场角(FOV)、离焦接收能量及离焦量之间的相互关系,并通过Matlab仿真,分析对比了离焦接收能量和离焦量对接收视场角的影响。结果显示,当离焦量为0.5 mm时,离焦接收能量从-20.9 d Bm提高到-4.1 d Bm,接收视场角能增大0.27 mrad;当离焦接收能量为-4.1 d Bm时,离焦量从0.2 mm扩大到1.0 mm,视场角能增大1.75 mrad。通过对比表明,提高离焦接收能量以及扩大离焦量都可以增加接收视场角,且扩大离焦量的效果相对比较明显,这对后续离焦系统的设计提供了理论指导依据。