供电电压闪变可能对异步电动机转子故障在线检测产生不利影响,导致基于定子电流信号分析(motor current signature analysis,MCSA)的转子故障在线检测方法失效。通过理论分析,揭示供电电压闪变恶化转子故障在线检测性能的机制。提出免...供电电压闪变可能对异步电动机转子故障在线检测产生不利影响,导致基于定子电流信号分析(motor current signature analysis,MCSA)的转子故障在线检测方法失效。通过理论分析,揭示供电电压闪变恶化转子故障在线检测性能的机制。提出免于供电电压闪变影响的异步电动机转子故障在线检测方法,首先,根据转子故障主特征频率分量预判转子健康或故障;继而,根据转子故障独有的辅助特征频率分量进一步确认转子健康或故障。仿真与实验结果证明了该方法的有效性。展开更多
将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signa...将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signal parameters via rotational invariancetechnique,ESPRIT),应用模拟转子故障的定子电流信号测试其频率分辨力、精度等性能,结果表明:即使对于短时信号,二者仍具高频率分辨力,可以准确地分辨定子电流信号中转子故障特征分量、主频分量之频率;但对其幅值、初相角,仅能提供"粗糙"估计。为此,尝试以优化算法——模拟退火算法(simulated annealing algorithm,SAA)与模式搜索算法(pattern search algorithm,PSA)确定各分量的幅值与初相角。同时,分别对MUSIC与ESPRIT、SAA与PSA做了性能对比,遴选优者并应用于转子故障检测。最后,针对转子断条故障进行实验,结果表明:基于高频率分辨力谱估计技术与优化算法的异步电动机转子故障检测方法有效、可行,即使在负载波动、噪声等干扰严重情况下仍然适用。展开更多
提出了一种基于多重信号分类(multiple signal classification,MUSIC)与模式搜索算法(pattern search algorithm,PSA)的异步电动机转子断条故障检测新方法。MUSIC方法对于短时信号具备高频率分辨力,可以准确计算转子断条故障特征分量以...提出了一种基于多重信号分类(multiple signal classification,MUSIC)与模式搜索算法(pattern search algorithm,PSA)的异步电动机转子断条故障检测新方法。MUSIC方法对于短时信号具备高频率分辨力,可以准确计算转子断条故障特征分量以及其他分量的频率;但对诸频率分量幅值和初相角则无法准确求解。因此引入PSA确定诸频率分量的幅值、初相角,并对1台Y100L-2型3 kW笼型异步电动机完成了转子断条故障检测实验。实验结果表明:基于MUSIC与PSA的异步电动机转子断条故障检测方法切实可行,适用于负荷波动、噪声等干扰严重情况。展开更多
文摘供电电压闪变可能对异步电动机转子故障在线检测产生不利影响,导致基于定子电流信号分析(motor current signature analysis,MCSA)的转子故障在线检测方法失效。通过理论分析,揭示供电电压闪变恶化转子故障在线检测性能的机制。提出免于供电电压闪变影响的异步电动机转子故障在线检测方法,首先,根据转子故障主特征频率分量预判转子健康或故障;继而,根据转子故障独有的辅助特征频率分量进一步确认转子健康或故障。仿真与实验结果证明了该方法的有效性。
文摘将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signal parameters via rotational invariancetechnique,ESPRIT),应用模拟转子故障的定子电流信号测试其频率分辨力、精度等性能,结果表明:即使对于短时信号,二者仍具高频率分辨力,可以准确地分辨定子电流信号中转子故障特征分量、主频分量之频率;但对其幅值、初相角,仅能提供"粗糙"估计。为此,尝试以优化算法——模拟退火算法(simulated annealing algorithm,SAA)与模式搜索算法(pattern search algorithm,PSA)确定各分量的幅值与初相角。同时,分别对MUSIC与ESPRIT、SAA与PSA做了性能对比,遴选优者并应用于转子故障检测。最后,针对转子断条故障进行实验,结果表明:基于高频率分辨力谱估计技术与优化算法的异步电动机转子故障检测方法有效、可行,即使在负载波动、噪声等干扰严重情况下仍然适用。