In the present study with Tan sheep, small-tailed Han sheep, Hu sheep, Tong sheep, and Wadi sheep, we detected the distribution of gene frequency of several microsatellite sites in different chromosomes, the result sh...In the present study with Tan sheep, small-tailed Han sheep, Hu sheep, Tong sheep, and Wadi sheep, we detected the distribution of gene frequency of several microsatellite sites in different chromosomes, the result showed that: 1) Hu sheep was in the status of Hardy-Weinberg extreme disequilibrium (P 〈 0.01), while populations including Tong sheep, small-tailed Han sheep, Tan sheep, and Wadi sheep were in Hardy-Weinberg equilibrium (P 〉 0.05). 2) Variance analysis of the heterozygosity and poly- morphic information content at rnicrosatellite makers showed that there were not significant differences among populations as to heterozygosity and PIC (P 〉 0.05), as to effective number of alleles there were not significant differences both among Tan sheep, Hu sheep, Tong sheep, and Wadi sheep, and between Wadi sheep and small-tailed sheep (P 〉 0.05), but between the former three populations and the latter two populations, there were significant differences (0.01〈 P 〈0.05). The variation levels of small-tailed Han sheep was the highest in the five populations based on microsatellite maker data, subsequently followed by Wadi sheep, Tong sheep, Tan sheep, and then Hu sheep. 3) The phylogenetic relationships of the five sheep populations in this study did not meet the mechanism of isolation by distance, and the genetic differentiation relationships among five sheep populations were not closely linearly correlative with their geography distribution. Our findings supported related records in literature: The five populations originated on different time stage from the primogenitor population and communicated genetically with each other thereafter in the process of natural and artificial selection and on different ecological environment.展开更多
This study is based on the Tong sheep obtained by the random sampling method of typical colonies in the central area of Baishui County in Shaanxi Province, China. An investigation was undertaken to clarify the gene co...This study is based on the Tong sheep obtained by the random sampling method of typical colonies in the central area of Baishui County in Shaanxi Province, China. An investigation was undertaken to clarify the gene constitution of blood protein and nonprotein types of Tong sheep. Twelve genetic markers were examined by starch-gel electrophoresis and cellulose acetate electrophoresis. Polymorphism in Tong sheep was found at the following 10 loci, transferrin (Tf), alkaline phosphatase (Alp), leucine aminopeptidase (Lap), arylesterase (Ary-Es), hemoglobin-β (Hb-β), X-protein (X-p), carbonic anhydrase (CA), catalase (Cat), malate dehydrogenase (MDH), and lysine (Ly), whereas, albumin (A1) and postalbumin (Po) loci were monomorphic. Genetic approach degree method and phylogenetic relationship clustering method were used to judge the origin and phylogenetic status of Tong sheep. Results from both methods maintained that Tong sheep belonged to the "Mongolia group", and Mongolia sheep was the origin of Tong sheep. This was also supported by the history of Tong sheep breeding. Compared to the phylogenetic relationship clustering method, the genetic approach degree method was more reliable for the extraction from East and South of Central Asia, and was more effective in reflecting the breeding course of Tong sheep.展开更多
基金This work was supported by the International Cooperation Item of the National Natural Science Foundation of China (No. 30213009, 30310103007, 30410103150)Natural Science Foundation of Jiangsu Province of China (No. BK2007556)+1 种基金Basic Natura Science Foundation for Colleges and Universities Jiangsu Province (No. NK051039, 06KJD230203)the New Century Talent Project of Yangzhou University in China.
文摘In the present study with Tan sheep, small-tailed Han sheep, Hu sheep, Tong sheep, and Wadi sheep, we detected the distribution of gene frequency of several microsatellite sites in different chromosomes, the result showed that: 1) Hu sheep was in the status of Hardy-Weinberg extreme disequilibrium (P 〈 0.01), while populations including Tong sheep, small-tailed Han sheep, Tan sheep, and Wadi sheep were in Hardy-Weinberg equilibrium (P 〉 0.05). 2) Variance analysis of the heterozygosity and poly- morphic information content at rnicrosatellite makers showed that there were not significant differences among populations as to heterozygosity and PIC (P 〉 0.05), as to effective number of alleles there were not significant differences both among Tan sheep, Hu sheep, Tong sheep, and Wadi sheep, and between Wadi sheep and small-tailed sheep (P 〉 0.05), but between the former three populations and the latter two populations, there were significant differences (0.01〈 P 〈0.05). The variation levels of small-tailed Han sheep was the highest in the five populations based on microsatellite maker data, subsequently followed by Wadi sheep, Tong sheep, Tan sheep, and then Hu sheep. 3) The phylogenetic relationships of the five sheep populations in this study did not meet the mechanism of isolation by distance, and the genetic differentiation relationships among five sheep populations were not closely linearly correlative with their geography distribution. Our findings supported related records in literature: The five populations originated on different time stage from the primogenitor population and communicated genetically with each other thereafter in the process of natural and artificial selection and on different ecological environment.
基金the International Cooperation Item of the National Natural Science Foundation of China (No. 30213009, 30310103007, 30410103150)Natural Science Foundation of Jiangsu Province of China (No. BK2007556)+1 种基金Basic Natura Science Foundation for Colleges and Universities Jiangsu Province (No. NK051039) the New Century Talent Project of Yangzhou University in China.
文摘This study is based on the Tong sheep obtained by the random sampling method of typical colonies in the central area of Baishui County in Shaanxi Province, China. An investigation was undertaken to clarify the gene constitution of blood protein and nonprotein types of Tong sheep. Twelve genetic markers were examined by starch-gel electrophoresis and cellulose acetate electrophoresis. Polymorphism in Tong sheep was found at the following 10 loci, transferrin (Tf), alkaline phosphatase (Alp), leucine aminopeptidase (Lap), arylesterase (Ary-Es), hemoglobin-β (Hb-β), X-protein (X-p), carbonic anhydrase (CA), catalase (Cat), malate dehydrogenase (MDH), and lysine (Ly), whereas, albumin (A1) and postalbumin (Po) loci were monomorphic. Genetic approach degree method and phylogenetic relationship clustering method were used to judge the origin and phylogenetic status of Tong sheep. Results from both methods maintained that Tong sheep belonged to the "Mongolia group", and Mongolia sheep was the origin of Tong sheep. This was also supported by the history of Tong sheep breeding. Compared to the phylogenetic relationship clustering method, the genetic approach degree method was more reliable for the extraction from East and South of Central Asia, and was more effective in reflecting the breeding course of Tong sheep.