The characterization of senescence-associated endopeptidase (EP) isoenzymes in wheat (Triticum aestivum L. cv. Yangmai 158) leaves during dark-induced senescence was performed. It was found that there was much higher ...The characterization of senescence-associated endopeptidase (EP) isoenzymes in wheat (Triticum aestivum L. cv. Yangmai 158) leaves during dark-induced senescence was performed. It was found that there was much higher endoproteolytic activity in dark-induced wheat leaves than in control. Six endopeptidase isoenzymes (EP1-EP6) were identified by natural gradient-polyacrylamide gel electrophoresis (PAGE) co-polymerized gelatin in the gel, five of which (EP1, EP2, EP4, EP5 and EP6) were only detected in senescing leaves. Treatment with 6-benzyl aminopurine (6-BA) delayed the expression of these EP isoenzymes and abscisic acid (ABA) accelerated it. The activity of EP3 could be detected at a wider range of pH and temperature levels while EP4, EP5 and EP 6 could be only detected at pH 4-5 and 30 -45 degreesC, EP1 and EP2 at pH 3-5 and 30-45 degreesC. All of the EP isoenzymes showed high thermal stability, especially EP3, EP5 and EP6 which still had activitiy even by incubation at 55 degreesC for 1 h. By using different class-specific inhibitors, EP1 and EP2 were characterized as metal-dependent cysteine-proteases, EP4 as a serine-protease.展开更多
The relationship between hydrogen peroxide (H 2O 2) and endopeptidase(EP) in wheat ( Triticum aestivum L. cv. Yanmai 158) leaves was studied during natural and artificial aging. Rapid accumulation of endogeno...The relationship between hydrogen peroxide (H 2O 2) and endopeptidase(EP) in wheat ( Triticum aestivum L. cv. Yanmai 158) leaves was studied during natural and artificial aging. Rapid accumulation of endogenous H 2O 2 and marked increase of EP activity were observed during the later phase of aging. A new EP isozyme with higher activity was detected by electrophoresis on polyacrylamide gels containing denatured heamoglobin. With the increase of exogenous H 2O 2, the activity of EP increased at first and then decreased.展开更多
Objective To investigate whether genes required for synaptogenesis and synaptic function are also involved in fat storage control in Caenorhabditis elegans. Methods Fat storage was examined in mutants of genes affecti...Objective To investigate whether genes required for synaptogenesis and synaptic function are also involved in fat storage control in Caenorhabditis elegans. Methods Fat storage was examined in mutants of genes affecting the synaptogenesis and synaptic function. In addition, the genetic interactions of SNAREs syntaxin/unc-64 and SNAP-25/ric-4 with daf-2, daf-7, nhr-49, sbp-1 and mdt-15 in regulating fat storage were further investigated. The tissue-specific activities of unc-64 and ric-4 were investigated to study the roles of unc-64 and ric-4 in regulating fat storage in the nervous system and/or the intestine. Results Mutations of genes required for the formation of presynaptic neurotransmission site did not obviously influence fat storage. However, among the genes required for synaptic function, the plasma membrane-associated SNAREs syntaxin/unc-64 and SNAP-25/ric-4 genes were involved in the fat storage control. Fat storage in the intestinal cells was dramatically increased in unc-64 and ric-4 mutants as revealed by Sudan Black and Nile Red strainings, although the fat droplet size was not significantly changed. Moreover, in both the nervous system and the intestine, expression of unc-64 significantly inhibited the increase in fat storage observed in unc-64 mutant. And expression of ric-4 in the nervous system completely restored fat storage in ric-4 mutant. Genetic interaction assay further indicated that both unc-64 and ric-4 regulated fat storage independently of daf-2 [encoding an insulin-like growth factor-I (IGF-I) receptor], daf-7 [encoding a transforming growth factor-β (TGF-β) ligand], and nhr-49 (encoding a nuclear hormone receptor). Besides, mutation of daf-16 did not obviously affect the phenotype of increased fat storage in unc-64 or ric-4 mutant. Furthermore, unc-64 and ric-4 regulated fat storage probably through the ARC105/mdt-15- and SREBP/sbp-1-mediated signaling pathways. In addition, fat storage in unc-64; ric-4 was higher than that in either unc-64 or ric-4 single mutant nematodes, suggesting that unc-64 functions in parallel with ric-4 in regulating fat storage. Conclusion The plasma membrane-associated SNAREs syntaxin/ unc-64 and SNAP-25/ric-4 function in parallel in regulating fat storage in C. elegans, probably through the ARC105/mdt-15- and SREBP/sbp-1-mediated signaling pathways.展开更多
文摘The characterization of senescence-associated endopeptidase (EP) isoenzymes in wheat (Triticum aestivum L. cv. Yangmai 158) leaves during dark-induced senescence was performed. It was found that there was much higher endoproteolytic activity in dark-induced wheat leaves than in control. Six endopeptidase isoenzymes (EP1-EP6) were identified by natural gradient-polyacrylamide gel electrophoresis (PAGE) co-polymerized gelatin in the gel, five of which (EP1, EP2, EP4, EP5 and EP6) were only detected in senescing leaves. Treatment with 6-benzyl aminopurine (6-BA) delayed the expression of these EP isoenzymes and abscisic acid (ABA) accelerated it. The activity of EP3 could be detected at a wider range of pH and temperature levels while EP4, EP5 and EP 6 could be only detected at pH 4-5 and 30 -45 degreesC, EP1 and EP2 at pH 3-5 and 30-45 degreesC. All of the EP isoenzymes showed high thermal stability, especially EP3, EP5 and EP6 which still had activitiy even by incubation at 55 degreesC for 1 h. By using different class-specific inhibitors, EP1 and EP2 were characterized as metal-dependent cysteine-proteases, EP4 as a serine-protease.
文摘The relationship between hydrogen peroxide (H 2O 2) and endopeptidase(EP) in wheat ( Triticum aestivum L. cv. Yanmai 158) leaves was studied during natural and artificial aging. Rapid accumulation of endogenous H 2O 2 and marked increase of EP activity were observed during the later phase of aging. A new EP isozyme with higher activity was detected by electrophoresis on polyacrylamide gels containing denatured heamoglobin. With the increase of exogenous H 2O 2, the activity of EP increased at first and then decreased.
基金supported by the grants from the National Natural Science Foundation of China(No. 30771113, 30870810)the Program for New Century Excellent Talents in University
文摘Objective To investigate whether genes required for synaptogenesis and synaptic function are also involved in fat storage control in Caenorhabditis elegans. Methods Fat storage was examined in mutants of genes affecting the synaptogenesis and synaptic function. In addition, the genetic interactions of SNAREs syntaxin/unc-64 and SNAP-25/ric-4 with daf-2, daf-7, nhr-49, sbp-1 and mdt-15 in regulating fat storage were further investigated. The tissue-specific activities of unc-64 and ric-4 were investigated to study the roles of unc-64 and ric-4 in regulating fat storage in the nervous system and/or the intestine. Results Mutations of genes required for the formation of presynaptic neurotransmission site did not obviously influence fat storage. However, among the genes required for synaptic function, the plasma membrane-associated SNAREs syntaxin/unc-64 and SNAP-25/ric-4 genes were involved in the fat storage control. Fat storage in the intestinal cells was dramatically increased in unc-64 and ric-4 mutants as revealed by Sudan Black and Nile Red strainings, although the fat droplet size was not significantly changed. Moreover, in both the nervous system and the intestine, expression of unc-64 significantly inhibited the increase in fat storage observed in unc-64 mutant. And expression of ric-4 in the nervous system completely restored fat storage in ric-4 mutant. Genetic interaction assay further indicated that both unc-64 and ric-4 regulated fat storage independently of daf-2 [encoding an insulin-like growth factor-I (IGF-I) receptor], daf-7 [encoding a transforming growth factor-β (TGF-β) ligand], and nhr-49 (encoding a nuclear hormone receptor). Besides, mutation of daf-16 did not obviously affect the phenotype of increased fat storage in unc-64 or ric-4 mutant. Furthermore, unc-64 and ric-4 regulated fat storage probably through the ARC105/mdt-15- and SREBP/sbp-1-mediated signaling pathways. In addition, fat storage in unc-64; ric-4 was higher than that in either unc-64 or ric-4 single mutant nematodes, suggesting that unc-64 functions in parallel with ric-4 in regulating fat storage. Conclusion The plasma membrane-associated SNAREs syntaxin/ unc-64 and SNAP-25/ric-4 function in parallel in regulating fat storage in C. elegans, probably through the ARC105/mdt-15- and SREBP/sbp-1-mediated signaling pathways.