期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv7-tiny的铝型材表面缺陷检测方法
1
作者 王浚银 文斌 +2 位作者 沈艳军 张俊 王子豪 《浙江大学学报(工学版)》 北大核心 2025年第3期523-534,共12页
针对铝型材表面缺陷具有种类多样、缺陷尺度差异大和小目标缺陷漏检的问题,提出改进的YOLOv7-tiny检测算法.利用残差结构、无参注意力机制(SimAM)、激活函数(FReLU)和裁剪卷积等重构空间金字塔池化模块,捕捉更多的细节信息,加强网络多... 针对铝型材表面缺陷具有种类多样、缺陷尺度差异大和小目标缺陷漏检的问题,提出改进的YOLOv7-tiny检测算法.利用残差结构、无参注意力机制(SimAM)、激活函数(FReLU)和裁剪卷积等重构空间金字塔池化模块,捕捉更多的细节信息,加强网络多尺度学习能力.优化检测层获取更多小目标特征和位置信息,提高网络多尺度缺陷检测能力.引入部分卷积替换高效层聚合网络(ELAN)中的3×3卷积建立轻量化模型,减少计算和训练负担.结合归一化Wasserstein距离(NWD)损失度量相似度,加速网络收敛并提升小目标缺陷检测能力.在天池铝型材数据集上进行测试,结果表明,改进YOLOv7-tiny算法在置信度阈值为0.25时,精确度达到95.0%,召回率达到91.8%,均值平均精度mAP@0.5达到94.5%,检测速度为45帧/s.相较于原算法,改进算法的mAP@0.5提高4.2个百分点,在脏点缺陷上的平均精度AP提高13.1个百分点;改进算法对于低分辨率图像和被干扰图像有更好的检测结果,表明其具备更好的泛化性和抗干扰能力. 展开更多
关键词 铝型材 表面缺陷 小目标检测 SPPCSPC重构 残差结构 YOLOv7-tiny 归一化Wasserstein距离(NWD)损失
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部