期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
4
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究
被引量:
55
1
作者
李苍柏
肖克炎
+5 位作者
李楠
宋相龙
张帅
王凯
楚文楷
曹瑞
《地球学报》
EI
CAS
CSCD
北大核心
2020年第2期309-319,共11页
地球化学勘查是通过发现异常、解释评价异常进行找矿的。因此,地球化学异常识别对矿产资源的定位、定量预测具有重要的的指示作用。在大数据时代的背景下,机器学习方法不要求数据满足正态分布的分布形式,且具有非线性以及泛化能力强等特...
地球化学勘查是通过发现异常、解释评价异常进行找矿的。因此,地球化学异常识别对矿产资源的定位、定量预测具有重要的的指示作用。在大数据时代的背景下,机器学习方法不要求数据满足正态分布的分布形式,且具有非线性以及泛化能力强等特点,因而逐渐地被应用于矿产资源的定量预测评价,如神经网络、支持向量机、贝叶斯网络、随机森林、受限玻尔兹曼机、极限学习机等。本文通过设计理论实验,可视化了不同算法,提出了不同机器学习方法在不同地区的地球化学异常信息提取中的效果存在不一致性的假设。在此基础上,以湖南香花岭锡多金属矿整装勘查区及甘肃合作金矿整装勘查区的地球化学异常提取为研究内容,将人工神经网络、随机森林以及支持向量机应用于研究区地球化学异常信息的提取与识别工作。在香花岭研究区,人工神经网络的结果较好,在合作研究区,随机森林的结果较好,从而验证了上述假设。通过生成两研究区的地球化学异常图,讨论了该方法在两研究区地球化学异常的地质意义和该方法的可靠性与实用性。此外,还完善了基于多种监督机器学习方法的地球化学异常信息提取流程,为软件开发提供了一定的理论依据。
展开更多
关键词
机器学习
地球化学异常
人工神经网络
随机森林
支持向量机
在线阅读
下载PDF
职称材料
深度学习在地质学上的应用
被引量:
11
2
作者
李苍柏
范建福
宋相龙
《地质学刊》
CAS
2018年第1期115-121,共7页
自Hinton等使用基于卷积神经网络的深度学习模型赢得Image Net分类比赛以来,深度学习的研究席卷了各个行业。通过介绍深度学习的历史,探索国内地质行业中深度学习模型的使用情况,并介绍深度学习的基础概念(如神经元、神经网络、监督学...
自Hinton等使用基于卷积神经网络的深度学习模型赢得Image Net分类比赛以来,深度学习的研究席卷了各个行业。通过介绍深度学习的历史,探索国内地质行业中深度学习模型的使用情况,并介绍深度学习的基础概念(如神经元、神经网络、监督学习和无监督学习等)以及深度学习基础模型中的2个重要网络:深度信念网络(DBN)和卷积神经网络(CNN)。在此基础上,类比深度学习在医学等相关领域的应用,提出了深度学习在地质上的几点应用:利用深度学习在计算机视觉上表现出的强大能力,可以对遥感图像进行聚类、对岩石样品图像进行分类、对岩石薄片数据进行描述;利用深度学习对原始数据表现出的强大识别能力,处理地质异常数据,从而确定成矿靶区的可能位置;利用深度学习的特点,对地震前的声信号数据进行处理,从而判断出地震发生前的剩余时间。
展开更多
关键词
深度学习
神经元
神经网络
监督学习
无监督学习
深度信念网络
卷积神经网络
地质学应用
在线阅读
下载PDF
职称材料
地质建模中的二维数据模型(英文)
被引量:
1
3
作者
肖克炎
邹伟
+3 位作者
李莹
李苍柏
宋相龙
范建福
《地质学刊》
CAS
2018年第3期351-360,共10页
地质图用于记录和显示研究区的地质特征,二维地质图通常借助于地理信息系统(GIS)编制而成。随着计算机GIS技术的发展,可以对点、定点、线和区(多边形)等地质特征做抽象处理,以联系地质图与传统地质模型。然而,GIS的传统数据结构不能通...
地质图用于记录和显示研究区的地质特征,二维地质图通常借助于地理信息系统(GIS)编制而成。随着计算机GIS技术的发展,可以对点、定点、线和区(多边形)等地质特征做抽象处理,以联系地质图与传统地质模型。然而,GIS的传统数据结构不能通过地质图来解释复杂的概念地质模型。阐述了使用信息技术表达地质图的若干关键问题,提出了面向对象的地质数据模型GeoFeature,并构建了支持存储和管理计算机数据结构的二维圆弧拓扑结构。最后,在Minesoft软件中集成了此功能。
展开更多
关键词
地质图
地质特征
地理信息系统
数据模型
在线阅读
下载PDF
职称材料
基于目标检测的地质异常信息提取——以湖南香花岭地区为例
4
作者
李苍柏
李楠
宋相龙
《地质学刊》
CAS
2018年第3期434-439,共6页
卷积神经网络在图像识别领域处于领先地位,在目标检测方面的应用也越来越广泛,其特点是可以提取点与点之间的相关关系。二维地质图中,点与点之间往往存在特定的空间关系,将卷积神经网络技术应用于地质异常信息的提取有其重要性。在讨论...
卷积神经网络在图像识别领域处于领先地位,在目标检测方面的应用也越来越广泛,其特点是可以提取点与点之间的相关关系。二维地质图中,点与点之间往往存在特定的空间关系,将卷积神经网络技术应用于地质异常信息的提取有其重要性。在讨论卷积神经网络以及基于该技术目标检测算法(YOLO)的基础上,以湖南香花岭地区为例,提取与锡矿成矿相关的构造信息并进行分析,结果该方法能够覆盖原有矿点,有效地定义点与点之间的相关关系,描述点与点之间的空间相关性,可靠地提取与成矿有关的构造线密度信息,在花岗岩体与构造复杂地区圈出地质异常信息。
展开更多
关键词
卷积神经网络
目标检测
YOLO算法
构造信息
湖南香花岭
在线阅读
下载PDF
职称材料
题名
支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究
被引量:
55
1
作者
李苍柏
肖克炎
李楠
宋相龙
张帅
王凯
楚文楷
曹瑞
机构
中国地质科学院矿产资源研究所
中国地质大学(北京)
中国地质科学院
出处
《地球学报》
EI
CAS
CSCD
北大核心
2020年第2期309-319,共11页
基金
国家自然科学基金面上项目“基于地质先验模型的区域大比例尺三维地质建模关键技术研究”(编号:41672330)
国家重点研发计划“深地资源勘查开采”重点专项课题“深部矿产三维可视化预测评价软件系统研发”(编号:2017YFC0601501)
中国地质调查局地质调查项目“全国矿产资源潜力动态评价”(编号:DD20190193)联合资助。
文摘
地球化学勘查是通过发现异常、解释评价异常进行找矿的。因此,地球化学异常识别对矿产资源的定位、定量预测具有重要的的指示作用。在大数据时代的背景下,机器学习方法不要求数据满足正态分布的分布形式,且具有非线性以及泛化能力强等特点,因而逐渐地被应用于矿产资源的定量预测评价,如神经网络、支持向量机、贝叶斯网络、随机森林、受限玻尔兹曼机、极限学习机等。本文通过设计理论实验,可视化了不同算法,提出了不同机器学习方法在不同地区的地球化学异常信息提取中的效果存在不一致性的假设。在此基础上,以湖南香花岭锡多金属矿整装勘查区及甘肃合作金矿整装勘查区的地球化学异常提取为研究内容,将人工神经网络、随机森林以及支持向量机应用于研究区地球化学异常信息的提取与识别工作。在香花岭研究区,人工神经网络的结果较好,在合作研究区,随机森林的结果较好,从而验证了上述假设。通过生成两研究区的地球化学异常图,讨论了该方法在两研究区地球化学异常的地质意义和该方法的可靠性与实用性。此外,还完善了基于多种监督机器学习方法的地球化学异常信息提取流程,为软件开发提供了一定的理论依据。
关键词
机器学习
地球化学异常
人工神经网络
随机森林
支持向量机
Keywords
machine learning
geochemical anomalies
Artificial Neural Network
Random Forest
Support Vector Machine
分类号
P632 [天文地球—地质矿产勘探]
O415 [理学—理论物理]
在线阅读
下载PDF
职称材料
题名
深度学习在地质学上的应用
被引量:
11
2
作者
李苍柏
范建福
宋相龙
机构
中国地质科学院矿产资源研究所
中国地质大学(北京)
出处
《地质学刊》
CAS
2018年第1期115-121,共7页
基金
全国重要矿种成矿区划部署研究地质矿产调查评价专项(12120114051501)
文摘
自Hinton等使用基于卷积神经网络的深度学习模型赢得Image Net分类比赛以来,深度学习的研究席卷了各个行业。通过介绍深度学习的历史,探索国内地质行业中深度学习模型的使用情况,并介绍深度学习的基础概念(如神经元、神经网络、监督学习和无监督学习等)以及深度学习基础模型中的2个重要网络:深度信念网络(DBN)和卷积神经网络(CNN)。在此基础上,类比深度学习在医学等相关领域的应用,提出了深度学习在地质上的几点应用:利用深度学习在计算机视觉上表现出的强大能力,可以对遥感图像进行聚类、对岩石样品图像进行分类、对岩石薄片数据进行描述;利用深度学习对原始数据表现出的强大识别能力,处理地质异常数据,从而确定成矿靶区的可能位置;利用深度学习的特点,对地震前的声信号数据进行处理,从而判断出地震发生前的剩余时间。
关键词
深度学习
神经元
神经网络
监督学习
无监督学习
深度信念网络
卷积神经网络
地质学应用
Keywords
deep learning
neuron
neural network
supervised learning
unsupervised learning
Deep Belief Network
Convolutional Neural Network
application in geology
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
地质建模中的二维数据模型(英文)
被引量:
1
3
作者
肖克炎
邹伟
李莹
李苍柏
宋相龙
范建福
机构
中国地质科学院矿产资源研究所
出处
《地质学刊》
CAS
2018年第3期351-360,共10页
基金
supported by the State Key Research Project ″Research and Demonstration of the System and Technology for Deep Resources Prediction″( 2017YFC0601500 )~~
文摘
地质图用于记录和显示研究区的地质特征,二维地质图通常借助于地理信息系统(GIS)编制而成。随着计算机GIS技术的发展,可以对点、定点、线和区(多边形)等地质特征做抽象处理,以联系地质图与传统地质模型。然而,GIS的传统数据结构不能通过地质图来解释复杂的概念地质模型。阐述了使用信息技术表达地质图的若干关键问题,提出了面向对象的地质数据模型GeoFeature,并构建了支持存储和管理计算机数据结构的二维圆弧拓扑结构。最后,在Minesoft软件中集成了此功能。
关键词
地质图
地质特征
地理信息系统
数据模型
Keywords
geological map
geological feature
GIS
data model
分类号
P208.2 [天文地球—地图制图学与地理信息工程]
在线阅读
下载PDF
职称材料
题名
基于目标检测的地质异常信息提取——以湖南香花岭地区为例
4
作者
李苍柏
李楠
宋相龙
机构
中国地质科学院矿产资源研究所
中国地质大学(北京)
出处
《地质学刊》
CAS
2018年第3期434-439,共6页
基金
国家自然科学基金项目"基于地质先验模型的区域大比例尺三维地质建模关键技术研究"(41672330)
国土资源部公益性行业科研专项"地质大数据技术研究与应用试点"(201511079-04)
文摘
卷积神经网络在图像识别领域处于领先地位,在目标检测方面的应用也越来越广泛,其特点是可以提取点与点之间的相关关系。二维地质图中,点与点之间往往存在特定的空间关系,将卷积神经网络技术应用于地质异常信息的提取有其重要性。在讨论卷积神经网络以及基于该技术目标检测算法(YOLO)的基础上,以湖南香花岭地区为例,提取与锡矿成矿相关的构造信息并进行分析,结果该方法能够覆盖原有矿点,有效地定义点与点之间的相关关系,描述点与点之间的空间相关性,可靠地提取与成矿有关的构造线密度信息,在花岗岩体与构造复杂地区圈出地质异常信息。
关键词
卷积神经网络
目标检测
YOLO算法
构造信息
湖南香花岭
Keywords
Convolutional Neural Network
object detection
YOLO algorithm
structure information
Xianghualing area in Hunan
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究
李苍柏
肖克炎
李楠
宋相龙
张帅
王凯
楚文楷
曹瑞
《地球学报》
EI
CAS
CSCD
北大核心
2020
55
在线阅读
下载PDF
职称材料
2
深度学习在地质学上的应用
李苍柏
范建福
宋相龙
《地质学刊》
CAS
2018
11
在线阅读
下载PDF
职称材料
3
地质建模中的二维数据模型(英文)
肖克炎
邹伟
李莹
李苍柏
宋相龙
范建福
《地质学刊》
CAS
2018
1
在线阅读
下载PDF
职称材料
4
基于目标检测的地质异常信息提取——以湖南香花岭地区为例
李苍柏
李楠
宋相龙
《地质学刊》
CAS
2018
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部