The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the...The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.展开更多
Diffusion bonding between tungsten and 0Cr13Al stainless steel using a Cu/90W-10Ni powder mixtures/Ni multi-interlayer was carried out in vacuum at 1150 °C with a pressure of 5 MPa for 60 min. The microstructures...Diffusion bonding between tungsten and 0Cr13Al stainless steel using a Cu/90W-10Ni powder mixtures/Ni multi-interlayer was carried out in vacuum at 1150 °C with a pressure of 5 MPa for 60 min. The microstructures, composition distribution and fracture characteristics of the joint were studied by SEM and EDS. Joint properties were evaluated by shear experiments and thermal shock tests. The results showed that the joints comprised tungsten/Cu-Ni sub-layer/W-Ni composites sub-layer/Ni sub-layer/0Cr13Al stainless steel. The W-Ni composites sub-layer with a homogeneous and dense microstructure was formed by solid phase sintering of 90W-10Ni powder mixtures. Sound bonding between tungsten base material and W-Ni composites sub-layer was realized based on transient liquid phase (TLP) diffusion bonding mechanism. Joints fractured at bonding zone of W-Ni composites sub-layer and Ni sub-layer during shear testing, and the average strength was 256 MPa. Thermal shock tests showed that joints could withstood 60 thermal cycles quenching from 700 °C to room temperature.展开更多
A new structural parameter of amorphous alloys called atomic bond proportion was proposed, and a topological algorithm for the structural parameter was proven feasible in the previous work. In the present study, a cor...A new structural parameter of amorphous alloys called atomic bond proportion was proposed, and a topological algorithm for the structural parameter was proven feasible in the previous work. In the present study, a correction factor, λ,is introduced to optimize the algorithm and dramatically improve the calculation accuracy of the atomic bond proportion.The correction factor represents the ability of heterogeneous atoms to combine with one another to form the metallic bonds and it is associated with the uniformity of the master alloy, mixing enthalpy, cooling rate during preparation, and annealing time. The correction factor provides a novel pathway for researching the structures of the amorphous alloys.展开更多
基金Projects(CKJB201205,QKJB201202,YJK201307)supported by the Nanjing Institute of Technology,China
文摘The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.
基金Project(51075205)supported by the National Natural Science Foundation of China
文摘Diffusion bonding between tungsten and 0Cr13Al stainless steel using a Cu/90W-10Ni powder mixtures/Ni multi-interlayer was carried out in vacuum at 1150 °C with a pressure of 5 MPa for 60 min. The microstructures, composition distribution and fracture characteristics of the joint were studied by SEM and EDS. Joint properties were evaluated by shear experiments and thermal shock tests. The results showed that the joints comprised tungsten/Cu-Ni sub-layer/W-Ni composites sub-layer/Ni sub-layer/0Cr13Al stainless steel. The W-Ni composites sub-layer with a homogeneous and dense microstructure was formed by solid phase sintering of 90W-10Ni powder mixtures. Sound bonding between tungsten base material and W-Ni composites sub-layer was realized based on transient liquid phase (TLP) diffusion bonding mechanism. Joints fractured at bonding zone of W-Ni composites sub-layer and Ni sub-layer during shear testing, and the average strength was 256 MPa. Thermal shock tests showed that joints could withstood 60 thermal cycles quenching from 700 °C to room temperature.
基金Project supported by Excellent Youth Foundation of Jiangsu Scientific Committee,China(Grant No.BK20180106)the National Natural Science Foundation of China(Grant No.51804091)+1 种基金Industry-University-Research Cooperation Project of Jiangsu Province,China(Grant No.BY2020383)Opening Project of State Key Laboratory of Metastable Materials Science and Technology(Grant No.201910).
文摘A new structural parameter of amorphous alloys called atomic bond proportion was proposed, and a topological algorithm for the structural parameter was proven feasible in the previous work. In the present study, a correction factor, λ,is introduced to optimize the algorithm and dramatically improve the calculation accuracy of the atomic bond proportion.The correction factor represents the ability of heterogeneous atoms to combine with one another to form the metallic bonds and it is associated with the uniformity of the master alloy, mixing enthalpy, cooling rate during preparation, and annealing time. The correction factor provides a novel pathway for researching the structures of the amorphous alloys.
基金Jiangsu Province Key Technology R&D(industry) Program(BE201217)Science and Technology Innovation Fund Program(CX2011028,CX2011029)+1 种基金Cooperative Innovation Fund of Jiangsu Province(BY2014004-09)Foundation of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology(ASMA201403)