如何有效挖掘多视角数据内部的一致性以及差异性是构建多视角模糊聚类算法的两个重要问题.本文在Co-FKM算法框架上,提出了基于低秩约束的熵加权多视角模糊聚类算法(Entropy-weighting multi-view fuzzy C-means with low rank constrain...如何有效挖掘多视角数据内部的一致性以及差异性是构建多视角模糊聚类算法的两个重要问题.本文在Co-FKM算法框架上,提出了基于低秩约束的熵加权多视角模糊聚类算法(Entropy-weighting multi-view fuzzy C-means with low rank constraint,LR-MVEWFCM).一方面,从视角之间的一致性出发,引入核范数对多个视角之间的模糊隶属度矩阵进行低秩约束;另一方面,基于香农熵理论引入视角权重自适应调整策略,使算法根据各视角的重要程度来处理视角间的差异性.本文使用交替方向乘子法(Alternating direction method of multipliers,ADMM)进行目标函数的优化.最后,人工模拟数据集和UCI(University of California Irvine)数据集上进行的实验结果验证了该方法的有效性.展开更多
文摘如何有效挖掘多视角数据内部的一致性以及差异性是构建多视角模糊聚类算法的两个重要问题.本文在Co-FKM算法框架上,提出了基于低秩约束的熵加权多视角模糊聚类算法(Entropy-weighting multi-view fuzzy C-means with low rank constraint,LR-MVEWFCM).一方面,从视角之间的一致性出发,引入核范数对多个视角之间的模糊隶属度矩阵进行低秩约束;另一方面,基于香农熵理论引入视角权重自适应调整策略,使算法根据各视角的重要程度来处理视角间的差异性.本文使用交替方向乘子法(Alternating direction method of multipliers,ADMM)进行目标函数的优化.最后,人工模拟数据集和UCI(University of California Irvine)数据集上进行的实验结果验证了该方法的有效性.
文摘传统Takagi-Sugeno(T-S)模糊系统模型因模糊规则使用样本全部特征,导致模型的可解释性较差,冗余特征的存在还会导致模型的过拟合,降低模型的泛化性能。针对该问题,提出了一种模糊系统联合稀疏建模新方法L2-CFS-FIS(L2-common feature selection fuzzy inference systems),从而提高模型的泛化性能和可解释性。该方法充分考虑存在于模糊规则间的公共特征信息,同时引入模型过拟合处理机制,将模糊系统建模问题转化为一个基于双正则的联合优化问题,并使用交替方向乘子(alternating direction method of multipliers,ADMM)算法来进行求解。实验结果表明,该方法所构造的模糊系统不仅能够获得较为满意的泛化性能,而且通过有效地挖掘规则间重要的公共特征,可以确保模型具有较高的可解释性。