期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Resonant interactions among two-dimensional nonlinear localized waves and lump molecules for the(2+1)-dimensional elliptic Toda equation
1
作者 庞福忠 葛根哈斯 赵雪梅 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期200-217,共18页
The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions ... The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions between two breathers,a breather/lump and line solitons as well as lump molecules for the(2+1)-dimensional elliptic Toda equation.Based on the N-soliton solution,we obtain the hybrid solutions consisting of line solitons,breathers and lumps.Through the asymptotic analysis of these hybrid solutions,we derive the phase shifts of the breather,lump and line solitons before and after the interaction between a breather/lump and line solitons.By making the phase shifts infinite,we obtain the resonant solution of two breathers and the resonant solutions of a breather/lump and line solitons.Through the asymptotic analysis of these resonant solutions,we demonstrate that the resonant interactions exhibit the fusion,fission,time-localized breather and rogue lump phenomena.Utilizing the velocity resonance method,we obtain lump–soliton,lump–breather,lump–soliton–breather and lump–breather–breather molecules.The above works have not been reported in the(2+1)-dimensional discrete nonlinear wave equations. 展开更多
关键词 (2+1)-dimensional elliptic Toda equation resonant interaction lump molecules
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部