期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5的矿山遥感图像去噪方法
1
作者 裴丹 房坤 +1 位作者 庆宇东 陈沛 《工矿自动化》 北大核心 2025年第3期148-155,共8页
典型露天矿场景的图像呈现多类型复合噪声特征,信噪比较低且具有显著的空间异质性,现有深度学习模型大多直接迁移自然图像去噪架构,忽视了矿山遥感图像特有的噪声分布规律。针对该问题,提出了一种基于改进YOLOv5的矿山遥感图像去噪方法... 典型露天矿场景的图像呈现多类型复合噪声特征,信噪比较低且具有显著的空间异质性,现有深度学习模型大多直接迁移自然图像去噪架构,忽视了矿山遥感图像特有的噪声分布规律。针对该问题,提出了一种基于改进YOLOv5的矿山遥感图像去噪方法。针对传统YOLOv5在高噪声环境下性能不稳定的问题,引入了多尺度特征融合模块,以增强模型对不同尺寸噪声的识别能力,同时结合残差注意力机制,提升了模型对有用特征的提取能力,增强了去噪效果的鲁棒性。采用自适应噪声估计技术,根据图像不同区域的噪声特性动态调整去噪参数,实现了更为精准的噪声抑制。实验结果表明:改进YOLOv5在峰值信噪比(PSNR)和结构相似性指数(SSIM)上均显著优于其他经典去噪方法,相较原始YOLOv5,PSNR提高2.5 dB,SSIM提高了0.05;改进YOLOv5在所有噪声类型下均表现出色,尤其是在高斯噪声环境中,其PSNR和SSIM分别达32.5 dB和0.95,显著优于其他经典去噪方法。 展开更多
关键词 矿山遥感图像去噪 YOLOv5 多尺度特征融合 残差注意力机制 自适应噪声估计
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部