In this article, we study the large time behavior of the 3-D isentropic compressible Navier-Stokes equation in the partial space-periodic domains, and simultaneously show that the related profile systems can be descri...In this article, we study the large time behavior of the 3-D isentropic compressible Navier-Stokes equation in the partial space-periodic domains, and simultaneously show that the related profile systems can be described by like Navier-Stokes equations with suitable "pressure" functions in lower dimensions. Our proofs are based on the energy methods together with some delicate analysis on the corresponding linearized problems.展开更多
本文考虑如下形式的n维可压缩流体的Navier-Stokes方程(n≥2): (?)_tρ+sum from j=1 to n((?)_j(ρu_j))=0, (?)_tu_i-sum from j=1 to n(ρ^(-1)[μ(?)_j((?)_ju_j+(?)_iu_j)+μ′(?)_i(?)_ju_j])=-sum from j=1 to n(u_j(?)_ju_i-ρ^...本文考虑如下形式的n维可压缩流体的Navier-Stokes方程(n≥2): (?)_tρ+sum from j=1 to n((?)_j(ρu_j))=0, (?)_tu_i-sum from j=1 to n(ρ^(-1)[μ(?)_j((?)_ju_j+(?)_iu_j)+μ′(?)_i(?)_ju_j])=-sum from j=1 to n(u_j(?)_ju_i-ρ^(-1)(?)_iP(ρ),(1) ρ|_(t=0)=(?)+(?)_0(x),u|_(t=0)=u_0(x),其中t≥0,x=(x_1,…,x_n),ρ为密度,u=(u_1,…,u_n)为速度,μ,μ′为粘性系数,P(ρ)为压力,为一常数,用|·|_s表示Sobolev空间范数。有如下结论:展开更多
For a class of special three-dimensional quasilinear wave equations, we study the blowup mechanism of classical solutions. More precisely, under the nondegenerate conditions, any radially symmetric solution with small...For a class of special three-dimensional quasilinear wave equations, we study the blowup mechanism of classical solutions. More precisely, under the nondegenerate conditions, any radially symmetric solution with small initial data is shown to develop singularities in the second order derivaties while the first order derivatives and itself remain continuous, moreover the blowup of solution is of “cusp type”.展开更多
基金supported by the NSFC(11571177)the Priority Academic Program Development of Jiangsu Higher Education Institutionssupported by the Fundamental Research Funds for the Central Universities(2014B14014)
文摘In this article, we study the large time behavior of the 3-D isentropic compressible Navier-Stokes equation in the partial space-periodic domains, and simultaneously show that the related profile systems can be described by like Navier-Stokes equations with suitable "pressure" functions in lower dimensions. Our proofs are based on the energy methods together with some delicate analysis on the corresponding linearized problems.
文摘本文考虑如下形式的n维可压缩流体的Navier-Stokes方程(n≥2): (?)_tρ+sum from j=1 to n((?)_j(ρu_j))=0, (?)_tu_i-sum from j=1 to n(ρ^(-1)[μ(?)_j((?)_ju_j+(?)_iu_j)+μ′(?)_i(?)_ju_j])=-sum from j=1 to n(u_j(?)_ju_i-ρ^(-1)(?)_iP(ρ),(1) ρ|_(t=0)=(?)+(?)_0(x),u|_(t=0)=u_0(x),其中t≥0,x=(x_1,…,x_n),ρ为密度,u=(u_1,…,u_n)为速度,μ,μ′为粘性系数,P(ρ)为压力,为一常数,用|·|_s表示Sobolev空间范数。有如下结论:
文摘For a class of special three-dimensional quasilinear wave equations, we study the blowup mechanism of classical solutions. More precisely, under the nondegenerate conditions, any radially symmetric solution with small initial data is shown to develop singularities in the second order derivaties while the first order derivatives and itself remain continuous, moreover the blowup of solution is of “cusp type”.