Upper ocean heat content is a factor critical to the intensity change of tropical cyclones(TCs). Because of the inhomogeneity of in situ observations in the North Indian Ocean,gridded temperature/salinity(T/S) profile...Upper ocean heat content is a factor critical to the intensity change of tropical cyclones(TCs). Because of the inhomogeneity of in situ observations in the North Indian Ocean,gridded temperature/salinity(T/S) profiles were derived from satellite data for 1993–2012 using a linear regression method. The satellite derived T/S dataset covered the region of 10°S–32°N,25°–100°E with daily temporal resolution,0.25°×0.25° spatial resolution,and 26 vertical layers from the sea surface to a depth of 1 000 m at standard layers. Independent Global Temperature Salinity Profile Project data were used to validate the satellite derived T/S fields. The analysis confirmed that the satellite derived temperature field represented the characteristics and vertical structure of the temperature field well. The results demonstrated that the vertically averaged root mean square error of the temperature was 0.83 in the upper 1 000 m and the corresponding correlation coefficient was 0.87,which accounted for 76% of the observed variance. After verification of the satellite derived T/S dataset,the TC heat potential(TCHP) was verified. The results show that the satellite derived values were coherent with observed TCHP data with a correlation coefficient of 0.86 and statistical significance at the 99% confidence level. The intensity change of TC Gonu during a period of rapid intensification was studied using satellite derived TCHP data. A delayed effect of the TCHP was found in relation to the intensity change of Gonu,suggesting a lag feature in the response of the inner core of the TC to the ocean.展开更多
The climate modulation on the sea surface height (SSH) in China seas is investigated using a China Ocean Reanalysis (CORA) dataset from 1958-2008. The dataset is constructed by assimilating the temperature/salinit...The climate modulation on the sea surface height (SSH) in China seas is investigated using a China Ocean Reanalysis (CORA) dataset from 1958-2008. The dataset is constructed by assimilating the temperature/salinity profiles derived from the satellite altimetry data and historical observational temperature/salinity profiles. Based on the Empirical Orthogonal Function (EOF), the CORA sea surface height anomaly (SSHa) is decomposed, and the interannual and decadal variability of the first three leading modes are analyzed. On the interannual timescale, the first principal component (PC1) is significant positively correlated with the E1 Nifio/Southern Oscillation (ENSO). On the decadal timescale, North Pacific Gyre Oscillation (NPGO) has significant negative correlation with PC 1 whereas Pacific Decadal Oscillation (PDO) is in phase with PC3. Analysis shows that the decadal variability of SSH is mainly modulated by the wind stress curl variability related to the NPGO and PDO. In addition, the effect of net heat flux associated to the NPGO and PDO on SSH is also investigated, with net heat flux variability in the Luzon strait and tropic Pacific found to influence the decadal variability of SSH.展开更多
At the interface between the lower atmosphere and sea surface,sea spray might significantly influence air-sea heat fluxes and subsequently,modulate upper ocean temperature during a typhoon passage. The effects of sea ...At the interface between the lower atmosphere and sea surface,sea spray might significantly influence air-sea heat fluxes and subsequently,modulate upper ocean temperature during a typhoon passage. The effects of sea spray were introduced into the parameterization of sea surface roughness in a 1-D turbulent model,to investigate the effects of sea spray on upper ocean temperature in the Kuroshio Extension area,for the cases of two real typhoons from 2006,Yagi and Soulik. Model output was compared with data from the Kuroshio Extension Observatory(KEO),and Reynolds and AMSRE satellite remote sensing sea surface temperatures. The results indicate drag coefficients that include the spray effect are closer to observations than those without,and that sea spray can enhance the heat fluxes(especially latent heat flux) considerably during a typhoon passage. Consequently,the model results with heat fluxes enhanced by sea spray simulate better the cooling process of the SST and upper-layer temperature profiles. Additionally,results from the simulation of the passage of typhoon Soulik(that passed KEO quickly),which included the sea spray effect,were better than for the simulated passage of typhoon Yagi(that crossed KEO slowly). These promising 1-D results could provide insight into the application of sea spray in general circulation models for typhoon studies.展开更多
基金Supported by the National Basic Research Program of China(973 Program)(No.2013CB430304)the National Natural Science Foundation of China(Nos.41030854,41106005,41176003,41206178,41376015,41376013,41306006)the National High-Tech R&D Program of China(No.2013AA09A505)
文摘Upper ocean heat content is a factor critical to the intensity change of tropical cyclones(TCs). Because of the inhomogeneity of in situ observations in the North Indian Ocean,gridded temperature/salinity(T/S) profiles were derived from satellite data for 1993–2012 using a linear regression method. The satellite derived T/S dataset covered the region of 10°S–32°N,25°–100°E with daily temporal resolution,0.25°×0.25° spatial resolution,and 26 vertical layers from the sea surface to a depth of 1 000 m at standard layers. Independent Global Temperature Salinity Profile Project data were used to validate the satellite derived T/S fields. The analysis confirmed that the satellite derived temperature field represented the characteristics and vertical structure of the temperature field well. The results demonstrated that the vertically averaged root mean square error of the temperature was 0.83 in the upper 1 000 m and the corresponding correlation coefficient was 0.87,which accounted for 76% of the observed variance. After verification of the satellite derived T/S dataset,the TC heat potential(TCHP) was verified. The results show that the satellite derived values were coherent with observed TCHP data with a correlation coefficient of 0.86 and statistical significance at the 99% confidence level. The intensity change of TC Gonu during a period of rapid intensification was studied using satellite derived TCHP data. A delayed effect of the TCHP was found in relation to the intensity change of Gonu,suggesting a lag feature in the response of the inner core of the TC to the ocean.
基金Supported by the National Basic Research Program of China(973 Program)(No.2013CB430304)the National Natural Science Foundation of China(Nos.41176003,41206178,41376013,41376015,41306006)+1 种基金the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the Global Change and Air-Sea Interaction of China(No.GASI-01-01-12)
文摘The climate modulation on the sea surface height (SSH) in China seas is investigated using a China Ocean Reanalysis (CORA) dataset from 1958-2008. The dataset is constructed by assimilating the temperature/salinity profiles derived from the satellite altimetry data and historical observational temperature/salinity profiles. Based on the Empirical Orthogonal Function (EOF), the CORA sea surface height anomaly (SSHa) is decomposed, and the interannual and decadal variability of the first three leading modes are analyzed. On the interannual timescale, the first principal component (PC1) is significant positively correlated with the E1 Nifio/Southern Oscillation (ENSO). On the decadal timescale, North Pacific Gyre Oscillation (NPGO) has significant negative correlation with PC 1 whereas Pacific Decadal Oscillation (PDO) is in phase with PC3. Analysis shows that the decadal variability of SSH is mainly modulated by the wind stress curl variability related to the NPGO and PDO. In addition, the effect of net heat flux associated to the NPGO and PDO on SSH is also investigated, with net heat flux variability in the Luzon strait and tropic Pacific found to influence the decadal variability of SSH.
基金Supported by the National Basic Research Program of China(973 Program)(No.2013CB430304)the National Natural Science Foundation of China(Nos.41030854,41106005,41176003,41206178,41376015,41376013,41306006)+1 种基金the National High-Tech R&D Program of China(No.2013AA09A505)the Public Science and Technology Research Funds Projects of Ocean(No.20130531-8)
文摘At the interface between the lower atmosphere and sea surface,sea spray might significantly influence air-sea heat fluxes and subsequently,modulate upper ocean temperature during a typhoon passage. The effects of sea spray were introduced into the parameterization of sea surface roughness in a 1-D turbulent model,to investigate the effects of sea spray on upper ocean temperature in the Kuroshio Extension area,for the cases of two real typhoons from 2006,Yagi and Soulik. Model output was compared with data from the Kuroshio Extension Observatory(KEO),and Reynolds and AMSRE satellite remote sensing sea surface temperatures. The results indicate drag coefficients that include the spray effect are closer to observations than those without,and that sea spray can enhance the heat fluxes(especially latent heat flux) considerably during a typhoon passage. Consequently,the model results with heat fluxes enhanced by sea spray simulate better the cooling process of the SST and upper-layer temperature profiles. Additionally,results from the simulation of the passage of typhoon Soulik(that passed KEO quickly),which included the sea spray effect,were better than for the simulated passage of typhoon Yagi(that crossed KEO slowly). These promising 1-D results could provide insight into the application of sea spray in general circulation models for typhoon studies.