将亲水改性的多异氰酸酯分别与马来海松酸改性聚酯多元醇(MPP)、聚酯多元醇(PP)和Bayhydrol D270聚酯多元醇水分散体进行复合交联制得MPP-2K-WPU、PP-2K-WPU和D270-2K-WPU,并采用FT-IR和DSC对产物进行表征。利用接触角法研究了n(—NCO)...将亲水改性的多异氰酸酯分别与马来海松酸改性聚酯多元醇(MPP)、聚酯多元醇(PP)和Bayhydrol D270聚酯多元醇水分散体进行复合交联制得MPP-2K-WPU、PP-2K-WPU和D270-2K-WPU,并采用FT-IR和DSC对产物进行表征。利用接触角法研究了n(—NCO)∶n(—OH)及多元醇组分种类对2K-WPU涂膜接触角、表面能和耐水性的影响,并采用Equation of State法和Owens-Wendt-Rabel-Kaelble法对试验数据进行分析。结果表明,与甲酰胺系列(甲酰胺、甲酰胺-二碘甲烷)检测液体相比,水系列(水、水-二碘甲烷)检测液体能更好地对2K-WPU涂膜表面性能进行描述;随着n(—NCO)∶n(—OH)的增加,MPP-2K-WPU的表面能先减小后增大,耐水性呈现先增强后减弱的趋势,当n(—NCO)∶n(—OH)为1.5∶1时其表面能最小、耐水性最强;与2种对照样(PP-2KWPU和D270-2K-WPU)相比,MPP-2K-WPU的表面能最小且耐水性最强。展开更多
以马来海松酸(MPA)、新戊二醇(NPG)、三羟甲基丙烷(TMP)、间苯二甲酸(IPA)、己二酸(AA)、间苯二甲酸-5-磺酸钠(5-SSIPA)为原料,采用先分步熔融后溶剂回流法制得水可分散型松香基聚酯多元醇(WDRPP)。探讨了反应时间、催化剂用量、n(—OH)...以马来海松酸(MPA)、新戊二醇(NPG)、三羟甲基丙烷(TMP)、间苯二甲酸(IPA)、己二酸(AA)、间苯二甲酸-5-磺酸钠(5-SSIPA)为原料,采用先分步熔融后溶剂回流法制得水可分散型松香基聚酯多元醇(WDRPP)。探讨了反应时间、催化剂用量、n(—OH)∶n(—COOH)和亲水单体用量对反应的影响,并利用傅里叶红外光谱(FT-IR)和^(13) C NMR对产物进行了表征。利用热重分析(TG)研究了WDRPP的耐热性,并采用Coats-Redfem法对WDRPP的热分解动力学试验数据进行拟合分析,得到动力学参数。结果表明,当反应时间为5.5 h(熔融反应3 h,溶剂回流2.5 h),催化剂用量为0.10%,n(—OH)∶n(—COOH)为1.4∶1,亲水单体用量为2.86%时,制备的WDRPP的热稳定性和WDRPP水分散体的稳定性最佳;WDRPP的最大失重速率温度(Tmax)为406.7℃、热解反应活化能为64.65 k J/mol,且热分解动力学曲线线性良好(R^2=0.997 3),表明WDRPP热分解过程符合一级反应动力学规律;FT-IR和^(13) C NMR的分析结果表明WDRPP制备成功。展开更多
文摘将亲水改性的多异氰酸酯分别与马来海松酸改性聚酯多元醇(MPP)、聚酯多元醇(PP)和Bayhydrol D270聚酯多元醇水分散体进行复合交联制得MPP-2K-WPU、PP-2K-WPU和D270-2K-WPU,并采用FT-IR和DSC对产物进行表征。利用接触角法研究了n(—NCO)∶n(—OH)及多元醇组分种类对2K-WPU涂膜接触角、表面能和耐水性的影响,并采用Equation of State法和Owens-Wendt-Rabel-Kaelble法对试验数据进行分析。结果表明,与甲酰胺系列(甲酰胺、甲酰胺-二碘甲烷)检测液体相比,水系列(水、水-二碘甲烷)检测液体能更好地对2K-WPU涂膜表面性能进行描述;随着n(—NCO)∶n(—OH)的增加,MPP-2K-WPU的表面能先减小后增大,耐水性呈现先增强后减弱的趋势,当n(—NCO)∶n(—OH)为1.5∶1时其表面能最小、耐水性最强;与2种对照样(PP-2KWPU和D270-2K-WPU)相比,MPP-2K-WPU的表面能最小且耐水性最强。
文摘以马来海松酸(MPA)、新戊二醇(NPG)、三羟甲基丙烷(TMP)、间苯二甲酸(IPA)、己二酸(AA)、间苯二甲酸-5-磺酸钠(5-SSIPA)为原料,采用先分步熔融后溶剂回流法制得水可分散型松香基聚酯多元醇(WDRPP)。探讨了反应时间、催化剂用量、n(—OH)∶n(—COOH)和亲水单体用量对反应的影响,并利用傅里叶红外光谱(FT-IR)和^(13) C NMR对产物进行了表征。利用热重分析(TG)研究了WDRPP的耐热性,并采用Coats-Redfem法对WDRPP的热分解动力学试验数据进行拟合分析,得到动力学参数。结果表明,当反应时间为5.5 h(熔融反应3 h,溶剂回流2.5 h),催化剂用量为0.10%,n(—OH)∶n(—COOH)为1.4∶1,亲水单体用量为2.86%时,制备的WDRPP的热稳定性和WDRPP水分散体的稳定性最佳;WDRPP的最大失重速率温度(Tmax)为406.7℃、热解反应活化能为64.65 k J/mol,且热分解动力学曲线线性良好(R^2=0.997 3),表明WDRPP热分解过程符合一级反应动力学规律;FT-IR和^(13) C NMR的分析结果表明WDRPP制备成功。