期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于DHPA^(*)-DSACO算法的AGV路径规划研究
1
作者 王俊岭 刘佳年 +1 位作者 边俊君 王振东 《机床与液压》 北大核心 2025年第5期15-23,共9页
自主引导车(AGV)的路径规划算法是确保其正常运行的关键部分。针对A^(*)算法在路径规划过程中存在的搜索效率低、路径曲率大的问题,以及蚁群ACO算法收敛速度慢和对参数敏感等缺陷,提出一种动态启发式惩罚A^(*)与动态感知蚁群优化算法相... 自主引导车(AGV)的路径规划算法是确保其正常运行的关键部分。针对A^(*)算法在路径规划过程中存在的搜索效率低、路径曲率大的问题,以及蚁群ACO算法收敛速度慢和对参数敏感等缺陷,提出一种动态启发式惩罚A^(*)与动态感知蚁群优化算法相融合的算法—DHPA^(*)-DSACO。DHPA^(*)算法通过设置动态权重因子,结合父节点启发距离,并引入转弯惩罚项,以降低运行时间和路径曲率。DSACO算法通过设置自适应蚁群启发因子和动态挥发因子,优化信息素更新策略,从而缩短路径长度。同时,该算法利用B样条曲线对路径进行平滑处理。为验证算法的可行性,在PyCharm环境中将DHPA^(*)-DSACO算法与其他算法进行对比测试,并对实验结果进行了分析。最后,为了模拟真实世界中的情况,基于ROS系统建立仿真平台,验证了DHPA^(*)-DSACO算法的有效性。结果表明:DHPA^(*)-DSACO算法有效降低了路径长度、曲率和运行时间,显著提升了运行效率。此外,该算法还能有效避免算法陷入局部最优解,减少收敛迭代次数,进一步增强了算法的鲁棒性,使其更好地适应AGV的实际运行情况。 展开更多
关键词 路径规划 蚁群算法 A^(*)算法 B样条曲线
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部