时域有限差分(finite difference time domain,FDTD)方法广泛应用于电磁场仿真领域,并与量子力学理论相结合来求解时域薛定谔方程,然而数值计算中的稳定性研究缺少理论方面的探讨。基于冯.诺依曼的稳定性分析方法得到了时域薛定谔方程...时域有限差分(finite difference time domain,FDTD)方法广泛应用于电磁场仿真领域,并与量子力学理论相结合来求解时域薛定谔方程,然而数值计算中的稳定性研究缺少理论方面的探讨。基于冯.诺依曼的稳定性分析方法得到了时域薛定谔方程的一维以及多维的稳定性条件,并且讨论了在不同势能情况下该稳定性条件的表现形式。数值结果充分证明了结论的正确性。展开更多
文摘时域有限差分(finite difference time domain,FDTD)方法广泛应用于电磁场仿真领域,并与量子力学理论相结合来求解时域薛定谔方程,然而数值计算中的稳定性研究缺少理论方面的探讨。基于冯.诺依曼的稳定性分析方法得到了时域薛定谔方程的一维以及多维的稳定性条件,并且讨论了在不同势能情况下该稳定性条件的表现形式。数值结果充分证明了结论的正确性。