On May 6, 2009, the X-ray imaging and biomedical application beamline(BL13W1) at Shanghai Synchrotron Radiation Facility(SSRF) officially opened to users, with 8–72.5 ke V X-rays. The experimental station is equipped...On May 6, 2009, the X-ray imaging and biomedical application beamline(BL13W1) at Shanghai Synchrotron Radiation Facility(SSRF) officially opened to users, with 8–72.5 ke V X-rays. The experimental station is equipped with four sets of X-ray CCD detectors of different pixel size(0.19–24 μm) for on-line phase-contrast imaging and micro-CT imaging with 0.8 μm spatial resolution and 1 ms temporal resolution. An in vivo microCT experiment for a living insect was realized in 4 s. An X-ray fluorescence detector is equipped for X-ray fluorescence mapping imaging and X-ray fluorescence micro-CT imaging with 50 μm spatial resolution. In order to meet different requirements from the users, several experimental methods, such as X-ray spiral micro-CT, Xray local micro-CT, X-ray fast micro-CT, X-ray grating-based differential micro-CT, X-ray fluorescence microCT and X-ray quantitative micro-CT have been developed, and nearly 60 papers related to those developments for this beamline have been published. Moreover, the beamline has realized the remote fast CT reconstruction,providing a great convenience for the users to process experimental data at their offices. As of August 2014,the beamline has offered the user beamtime of(23 145 h), from which 232 user papers have been published,including 151 SCI papers and 55 papers with SCI impact factor > 3. The quantity and quality of the user paper outcome keep a steady increase. Some typical user experimental results are introduced.展开更多
High resolution Fresnel zone plates for nanoscale three-dimensional imaging of materials by both soft and hard x-rays are increasingly needed by the broad applications in nanoscience and nanotechnology.When the outmos...High resolution Fresnel zone plates for nanoscale three-dimensional imaging of materials by both soft and hard x-rays are increasingly needed by the broad applications in nanoscience and nanotechnology.When the outmost zone-width is shrinking down to 50 nm or even below,patterning the zone plates with high aspect ratio by electron beam lithography still remains a challenge because of the proximity effect.The uneven charge distribution in the exposed resist is still frequently observed even after standard proximity effect correction(PEC),because of the large variety in the line width.This work develops a new strategy,nicknamed as local proximity effect correction(LPEC),efficiently modifying the deposited energy over the whole zone plate on the top of proximity effect correction.By this way,50 nm zone plates with the aspect ratio from 4:1 up to 15:1 and the duty cycle close to 0.5 have been fabricated.Their imaging capability in soft(1.3 keV)and hard(9 keV)x-ray,respectively,has been demonstrated in Shanghai Synchrotron Radiation Facility(SSRF)with the resolution of 50 nm.The local proximity effect correction developed in this work should also be generally significant for the generation of zone plates with high resolutions beyond 50 nm.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.11475248 and 11105213)
文摘On May 6, 2009, the X-ray imaging and biomedical application beamline(BL13W1) at Shanghai Synchrotron Radiation Facility(SSRF) officially opened to users, with 8–72.5 ke V X-rays. The experimental station is equipped with four sets of X-ray CCD detectors of different pixel size(0.19–24 μm) for on-line phase-contrast imaging and micro-CT imaging with 0.8 μm spatial resolution and 1 ms temporal resolution. An in vivo microCT experiment for a living insect was realized in 4 s. An X-ray fluorescence detector is equipped for X-ray fluorescence mapping imaging and X-ray fluorescence micro-CT imaging with 50 μm spatial resolution. In order to meet different requirements from the users, several experimental methods, such as X-ray spiral micro-CT, Xray local micro-CT, X-ray fast micro-CT, X-ray grating-based differential micro-CT, X-ray fluorescence microCT and X-ray quantitative micro-CT have been developed, and nearly 60 papers related to those developments for this beamline have been published. Moreover, the beamline has realized the remote fast CT reconstruction,providing a great convenience for the users to process experimental data at their offices. As of August 2014,the beamline has offered the user beamtime of(23 145 h), from which 232 user papers have been published,including 151 SCI papers and 55 papers with SCI impact factor > 3. The quantity and quality of the user paper outcome keep a steady increase. Some typical user experimental results are introduced.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1732104)China Postdoctoral Science Foundation(Grant No.2017M611443)Shanghai STCSM2019-11-20 Grant,China(Grant No.19142202700)。
文摘High resolution Fresnel zone plates for nanoscale three-dimensional imaging of materials by both soft and hard x-rays are increasingly needed by the broad applications in nanoscience and nanotechnology.When the outmost zone-width is shrinking down to 50 nm or even below,patterning the zone plates with high aspect ratio by electron beam lithography still remains a challenge because of the proximity effect.The uneven charge distribution in the exposed resist is still frequently observed even after standard proximity effect correction(PEC),because of the large variety in the line width.This work develops a new strategy,nicknamed as local proximity effect correction(LPEC),efficiently modifying the deposited energy over the whole zone plate on the top of proximity effect correction.By this way,50 nm zone plates with the aspect ratio from 4:1 up to 15:1 and the duty cycle close to 0.5 have been fabricated.Their imaging capability in soft(1.3 keV)and hard(9 keV)x-ray,respectively,has been demonstrated in Shanghai Synchrotron Radiation Facility(SSRF)with the resolution of 50 nm.The local proximity effect correction developed in this work should also be generally significant for the generation of zone plates with high resolutions beyond 50 nm.