期刊文献+

Large language models for diabetes training:a prospective study

用于糖尿病培训的大型语言模型:一项前瞻性研究
原文传递
导出
摘要 Diabetes poses a considerable global health challenge,with varying levels of diabetes knowledge among healthcare professionals,highlighting the importance of diabetes training.Large Language Models(LLMs)provide new insights into diabetes training,but their performance in diabetes-related queries remains uncertain,especially outside the English language like Chinese.We first evaluated the performance of ten LLMs:ChatGPT-3.5,ChatGPT-4.0,Google Bard,LlaMA-7B,LlaMA2-7B,about:blank ERNIE Bot,Ali Tongyi Qianwen,MedGPT,HuatuoGPT,and Chinese LlaMA2-7B on diabetes-related queries,based on the Chinese National Certificate Examination for Primary Diabetes Care in China(NCE-CPDC)and the English Specialty Certificate Examination in Endocrinology and Diabetes of Membership of the Royal College of Physicians of the United Kingdom.Second,we assessed the training of primary care physicians(PCPs)without and with the assistance of ChatGPT-4.0 in the NCE-CPDC examination to ascertain the reliability of LLMs as medical assistants.We found that ChatGPT-4.0 outperformed other LLMs in the English examination,achieving a passing accuracy of 62.50%,which was significantly higher than that of Google Bard,LlaMA-7B,and LlaMA2-7B.For the NCE-CPFC examination,ChatGPT-4.0,Ali Tongyi Qianwen,about:blank ERNIE Bot,Google Bard,MedGPT,and ChatGPT-3.5 successfully passed,whereas LlaMA2-7B,HuatuoGPT,Chinese LLaMA2-7B,and LlaMA-7B failed.ChatGPT-4.0(84.82%)surpassed all PCPs and assisted most PCPs in the NCE-CPDC examination(improving by 1%–6.13%).In summary,LLMs demonstrated outstanding competence for diabetes-related questions in both the Chinese and English language,and hold great potential to assist future diabetes training for physicians globally.
作者 Haoxuan Li Zehua Jiang Zhouyu Guan Yuqian Bao Yuexing Liu Tingting Hu Jiajia Li Ruhan Liu Liang Wu Di Cheng Hongwei Ji Yong Wang Ya-Xing Wang Carol Y.Cheung Yingfeng Zheng Jihong Wang Zhen Li Weibing Wu Cynthia Ciwei Lim Yong Mong Bee Hong Chang Tan Elif I.Ekinci David C.Klonoff Justin B.Echouffo-Tcheugui Nestoras Mathioudakis Leonor Corsino Rafael Simó Charumathi Sabanayagam Gavin Siew Wei Tan Ching-Yu Cheng Tien Yin Wong Huating Li Chun Cai Lijuan Mao Lee-Ling Lim Yih-Chung Tham Bin Sheng Weiping Jia 李灏萱;江泽铧;管洲榆;包玉倩;刘月星;胡婷婷;李佳佳;刘茹涵;吴量;程棣;纪宏伟;王勇;王亚星;Carol Y.Cheung;郑颖丰;王继红;李震;吴卫兵;Cynthia Ciwei Lim;Yong Mong Bee;Hong Chang Tan;Elif I.Ekinci;David C.Klonoff;Justin B.Echouffo-Tcheugui;Nestoras Mathioudakis;Leonor Corsino;Rafael Simó;Charumathi Sabanayagam;Gavin Siew Wei Tan;程景煜;黄天荫;李华婷;蔡淳;毛丽娟;Lee-Ling Lim;覃宇宗;盛斌;贾伟平
出处 《Science Bulletin》 2025年第6期934-942,共9页 科学通报(英文版)
基金 supported by the Noncommunicable Chronic Diseases-National Science and Technology Major Project(2023ZD0509202 and 2023ZD0509201) National Natural Science Foundation of China(62077037,8238810007,82022012,81870598,62272298 and 82388101) the National Key Research and Development Program of China(2022YFC2502800 and 2022YFC2407000) the Shanghai Municipal Key Clinical Specialty,Shanghai Research Center for Endocrine and Metabolic Diseases(2022ZZ01002) the Chinese Academy of Engineering(2022-XY-08) the Innovative Research Team of High-level Local Universities in Shanghai(SHSMUZDCX20212700) Beijing Natural Science Foundation(IS23096).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部